Usar arquivos YAML pré-configurados do Google Kubernetes Engine para otimizar a performance do Cloud Storage FUSE
Nesta página, você encontra arquivos YAML pré-configurados do Google Kubernetes Engine para ajudar a otimizar a performance do Cloud Storage FUSE para sua carga de trabalho específica. Se você estiver usando GPUs ou TPUs do Cloud para treinamento, serviço ou checkpoint, use as configurações de exemplo fornecidas nesta página para implantar rapidamente seus pods do GKE e acessar seu bucket do Cloud Storage.
Configurar e implantar cargas de trabalho do GKE com o Cloud Storage FUSE usando arquivos YAML de exemplo
Para usar configurações de exemplo, siga estas etapas:
Verifique se o driver FUSE CSI do Cloud Storage para Google Kubernetes Engine está em execução em
clusters do GKE nas versões 1.32.2-gke.1297001
ou mais recentes.
Verifique se a conta de serviço do Google Kubernetes Engine tem as permissões necessárias para acessar o bucket de destino do Cloud Storage.
Localize as configurações de exemplo que você quer aplicar com base no tipo de máquina
e na carga de trabalho usando um dos seguintes arquivos YAML:
GPU
Use um dos seguintes arquivos YAML específicos da GPU do Cloud com base no tipo de
carga de trabalho:
Implante o PersistentVolume e o PersistentVolumeClaim aplicando o arquivo
PersistentVolume.
O webhook de admissão de pod do GKE
inspeciona os atributos do PersistentVolume para aplicar possíveis otimizações,
como a injeção de contêineres secundários antes da programação do pod.
kubectl apply -f PERSISTENT_VOLUME_YAML_FILE_NAME
Em que:
PERSISTENT_VOLUME_YAML_FILE_NAME é o nome do arquivo YAML do PersistentVolume. Por exemplo, serving-pv.yaml.
Implante a especificação do pod que faz referência ao PersistentVolumeClaim:
kubectl apply -f POD_YAML_FILE_NAME
Em que:
POD_YAML_FILE_NAME é o nome do arquivo de configuração YAML do pod. Por exemplo, serving-pod.yaml.
[[["Fácil de entender","easyToUnderstand","thumb-up"],["Meu problema foi resolvido","solvedMyProblem","thumb-up"],["Outro","otherUp","thumb-up"]],[["Não contém as informações de que eu preciso","missingTheInformationINeed","thumb-down"],["Muito complicado / etapas demais","tooComplicatedTooManySteps","thumb-down"],["Desatualizado","outOfDate","thumb-down"],["Problema na tradução","translationIssue","thumb-down"],["Problema com as amostras / o código","samplesCodeIssue","thumb-down"],["Outro","otherDown","thumb-down"]],["Última atualização 2025-08-25 UTC."],[],[],null,["# Use pre-configured Google Kubernetes Engine YAML files to optimize Cloud Storage FUSE performance\n\nThis page provides pre-configured Google Kubernetes Engine YAML files to help you optimize\nCloud Storage FUSE performance for your specific workload. Whether you're using\nCloud GPUs or Cloud TPU for training, serving, or checkpointing, you can\nuse the sample configurations provided in this page to quickly deploy your\nGKE pods and access your Cloud Storage bucket.\n| **Note:** This page provides instructions for tuning Cloud Storage FUSE performance in Google Kubernetes Engine-specific pre-configured YAML files. To learn about tuning Cloud Storage FUSE using the configuration file and CLI options, see [Cloud Storage FUSE performance tuning best practices](/storage/docs/cloud-storage-fuse/performance).\n\nConfigure and deploy GKE workloads with Cloud Storage FUSE using sample YAML files\n----------------------------------------------------------------------------------\n\nTo utilize sample configurations, perform the following steps:\n\n1. Verify that the Cloud Storage FUSE CSI driver for Google Kubernetes Engine is running on\n GKE clusters of GKE versions 1.32.2-gke.1297001\n or later.\n\n2. Verify that the Google Kubernetes Engine service account possesses the necessary\n permissions to access the target Cloud Storage bucket.\n\n3. Locate the sample configurations you want to apply based on your machine\n type and workload by using one of the following YAML files:\n\n ### GPU\n\n Use one of the following Cloud GPUs-specific YAML files based on your\n workload type:\n - [Training](https://github.com/GoogleCloudPlatform/gcsfuse/blob/master/samples/gke-csi-yaml/gpu/training-pv.yaml)\n\n - [Serving](https://github.com/GoogleCloudPlatform/gcsfuse/blob/master/samples/gke-csi-yaml/gpu/serving-pv.yaml)\n\n - [Checkpointing and JIT cache](https://github.com/GoogleCloudPlatform/gcsfuse/blob/master/samples/gke-csi-yaml/gpu/checkpointing-pv.yaml)\n\n ### TPU\n\n Use one of the following Cloud TPU-specific YAML files based on your\n workload type:\n - [Training](https://github.com/GoogleCloudPlatform/gcsfuse/blob/master/samples/gke-csi-yaml/tpu/training-pv.yaml)\n\n - [Serving](https://github.com/GoogleCloudPlatform/gcsfuse/blob/master/samples/gke-csi-yaml/tpu/serving-pv.yaml)\n\n - [Checkpointing and JIT cache](https://github.com/GoogleCloudPlatform/gcsfuse/blob/master/samples/gke-csi-yaml/tpu/checkpointing-pv.yaml)\n\n4. Deploy the corresponding pod specification that accesses the\n PersistentVolumeClaim using one the following YAML files:\n\n ### GPU\n\n Deploy the corresponding Cloud GPUs-specific pod specification that\n accesses the PersistentVolumeClaim based on your workload type:\n - [Training](https://github.com/GoogleCloudPlatform/gcsfuse/blob/master/samples/gke-csi-yaml/gpu/training-pod.yaml)\n\n - [Serving](https://github.com/GoogleCloudPlatform/gcsfuse/blob/master/samples/gke-csi-yaml/gpu/serving-pod.yaml)\n\n - [Checkpointing and JIT cache](https://github.com/GoogleCloudPlatform/gcsfuse/blob/master/samples/gke-csi-yaml/gpu/checkpointing-pod.yaml)\n\n ### TPU\n\n Deploy the corresponding Cloud TPU-specific pod specification that\n accesses the PersistentVolumeClaim based on your workload type:\n - [Training](https://github.com/GoogleCloudPlatform/gcsfuse/blob/master/samples/gke-csi-yaml/tpu/training-pod.yaml)\n\n - [Serving](https://github.com/GoogleCloudPlatform/gcsfuse/blob/master/samples/gke-csi-yaml/tpu/serving-pod.yaml)\n\n - [Checkpointing and JIT cache](https://github.com/GoogleCloudPlatform/gcsfuse/blob/master/samples/gke-csi-yaml/tpu/checkpointing-pod.yaml)\n\n5. Deploy the PersistentVolume and PersistentVolumeClaim by applying the\n PersistentVolume file.\n\n The GKE pod admission webhook\n inspects the PersistentVolume's attributes to apply potential optimizations\n such as the injection of sidecar containers before the pod is scheduled. \n\n ```\n kubectl apply -f PERSISTENT_VOLUME_YAML_FILE_NAME\n ```\n\n Where:\n - \u003cvar translate=\"no\"\u003ePERSISTENT_VOLUME_YAML_FILE_NAME\u003c/var\u003e is the name of the PersistentVolume YAML filename. For example, `serving-pv.yaml`.\n6. Deploy the pod specification that references the PersistentVolumeClaim:\n\n ```\n kubectl apply -f POD_YAML_FILE_NAME\n ```\n\n Where:\n - \u003cvar translate=\"no\"\u003ePOD_YAML_FILE_NAME\u003c/var\u003e is the name of the pod YAML configuration file. For example, `serving-pod.yaml`.\n\nWhat's next\n-----------\n\n- [Learn how to monitor Cloud Storage FUSE performance using metrics](/storage/docs/cloud-storage-fuse/metrics)."]]