- 3.54.0 (latest)
 - 3.53.0
 - 3.52.0
 - 3.51.0
 - 3.50.0
 - 3.49.0
 - 3.48.0
 - 3.47.0
 - 3.46.0
 - 3.45.0
 - 3.44.0
 - 3.43.0
 - 3.42.0
 - 3.41.0
 - 3.40.0
 - 3.39.0
 - 3.38.0
 - 3.37.0
 - 3.36.0
 - 3.35.0
 - 3.34.0
 - 3.33.0
 - 3.32.0
 - 3.31.0
 - 3.30.0
 - 3.29.0
 - 3.28.0
 - 3.27.0
 - 3.26.0
 - 3.25.0
 - 3.24.0
 - 3.23.0
 - 3.22.0
 - 3.21.0
 - 3.20.0
 - 3.19.0
 - 3.18.0
 - 3.17.0
 - 3.16.0
 - 3.15.0
 - 3.14.0
 - 3.13.0
 - 3.12.0
 - 3.11.0
 - 3.10.0
 - 3.9.0
 - 3.8.0
 - 3.7.0
 - 3.6.0
 - 3.5.0
 - 3.4.0
 - 3.3.0
 - 3.2.0
 - 3.1.0
 - 3.0.0
 - 2.28.0
 - 2.27.0
 - 2.26.0
 - 2.25.0
 - 2.24.0
 - 2.23.0
 - 2.22.0
 - 2.21.0
 - 2.20.0
 - 2.19.0
 - 2.18.0
 - 2.17.0
 - 2.16.0
 - 2.15.0
 - 2.14.0
 - 2.13.0
 - 2.12.0
 - 2.11.0
 - 2.10.0
 - 2.9.0
 - 2.8.0
 - 2.7.0
 - 2.6.0
 - 2.5.0
 - 2.4.0
 - 2.3.0
 - 2.2.0
 - 2.1.0
 - 2.0.0
 - 1.8.0
 - 1.7.0
 - 1.6.0
 - 1.5.0
 - 1.4.0
 - 1.3.0
 - 1.2.0
 - 1.1.0
 - 1.0.0
 
public enum ExplanationMetadata.Types.InputMetadata.Types.EncodingReference documentation and code samples for the Vertex AI v1 API enum ExplanationMetadata.Types.InputMetadata.Types.Encoding.
Defines how a feature is encoded. Defaults to IDENTITY.
Namespace
Google.Cloud.AIPlatform.V1Assembly
Google.Cloud.AIPlatform.V1.dll
Fields | 
      |
|---|---|
| Name | Description | 
BagOfFeatures | 
        The tensor represents a bag of features where each index maps to a feature. [InputMetadata.index_feature_mapping][google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata.index_feature_mapping] must be provided for this encoding. For example:  | 
      
BagOfFeaturesSparse | 
        The tensor represents a bag of features where each index maps to a feature. Zero values in the tensor indicates feature being non-existent. [InputMetadata.index_feature_mapping][google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata.index_feature_mapping] must be provided for this encoding. For example:  | 
      
CombinedEmbedding | 
        The tensor is encoded into a 1-dimensional array represented by an encoded tensor. [InputMetadata.encoded_tensor_name][google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata.encoded_tensor_name] must be provided for this encoding. For example:  | 
      
ConcatEmbedding | 
        Select this encoding when the input tensor is encoded into a 2-dimensional array represented by an encoded tensor. [InputMetadata.encoded_tensor_name][google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata.encoded_tensor_name] must be provided for this encoding. The first dimension of the encoded tensor's shape is the same as the input tensor's shape. For example:  | 
      
Identity | 
        The tensor represents one feature.  | 
      
Indicator | 
        The tensor is a list of binaries representing whether a feature exists or not (1 indicates existence). [InputMetadata.index_feature_mapping][google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata.index_feature_mapping] must be provided for this encoding. For example:  | 
      
Unspecified | 
        Default value. This is the same as IDENTITY.  |