public static final class AutoMlImageSegmentationInputs.Builder extends GeneratedMessageV3.Builder<AutoMlImageSegmentationInputs.Builder> implements AutoMlImageSegmentationInputsOrBuilder
   
  Protobuf type 
 google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlImageSegmentationInputs
    Inherited Members
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
      com.google.protobuf.GeneratedMessageV3.Builder.getUnknownFieldSetBuilder()
    
    
    
    
    
    
    
    
    
    
    
    
      com.google.protobuf.GeneratedMessageV3.Builder.mergeUnknownLengthDelimitedField(int,com.google.protobuf.ByteString)
    
    
      com.google.protobuf.GeneratedMessageV3.Builder.mergeUnknownVarintField(int,int)
    
    
    
    
    
      com.google.protobuf.GeneratedMessageV3.Builder.parseUnknownField(com.google.protobuf.CodedInputStream,com.google.protobuf.ExtensionRegistryLite,int)
    
    
    
    
      com.google.protobuf.GeneratedMessageV3.Builder.setUnknownFieldSetBuilder(com.google.protobuf.UnknownFieldSet.Builder)
    
    
    
    
    
    
    
    
    
    
    
    
   
  Static Methods
  
  
  
  
    public static final Descriptors.Descriptor getDescriptor()
   
  Returns
  
  Methods
  
  
  
  
    public AutoMlImageSegmentationInputs.Builder addRepeatedField(Descriptors.FieldDescriptor field, Object value)
   
  Parameters
  
  Returns
  
  Overrides
  
  
  
  
    public AutoMlImageSegmentationInputs build()
   
  Returns
  
  
  
  
    public AutoMlImageSegmentationInputs buildPartial()
   
  Returns
  
  
  
  
    public AutoMlImageSegmentationInputs.Builder clear()
   
  Returns
  
  Overrides
  
  
  
  
    public AutoMlImageSegmentationInputs.Builder clearBaseModelId()
   
   The ID of the base model. If it is specified, the new model will be
 trained based on the base model. Otherwise, the new model will be
 trained from scratch. The base model must be in the same
 Project and Location as the new Model to train, and have the same
 modelType.
 string base_model_id = 3;
    public AutoMlImageSegmentationInputs.Builder clearBudgetMilliNodeHours()
   
   The training budget of creating this model, expressed in milli node
 hours i.e. 1,000 value in this field means 1 node hour. The actual
 metadata.costMilliNodeHours will be equal or less than this value.
 If further model training ceases to provide any improvements, it will
 stop without using the full budget and the metadata.successfulStopReason
 will be model-converged.
 Note, node_hour  = actual_hour * number_of_nodes_involved. Or
 actaul_wall_clock_hours = train_budget_milli_node_hours /
                           (number_of_nodes_involved * 1000)
 For modelType cloud-high-accuracy-1(default), the budget must be between
 20,000 and 2,000,000 milli node hours, inclusive. The default value is
 192,000 which represents one day in wall time
 (1000 milli * 24 hours * 8 nodes).
 int64 budget_milli_node_hours = 2;
    public AutoMlImageSegmentationInputs.Builder clearField(Descriptors.FieldDescriptor field)
   
  Parameter
  
  Returns
  
  Overrides
  
  
  
  
    public AutoMlImageSegmentationInputs.Builder clearModelType()
   
  
 .google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlImageSegmentationInputs.ModelType model_type = 1;
 
    public AutoMlImageSegmentationInputs.Builder clearOneof(Descriptors.OneofDescriptor oneof)
   
  Parameter
  
  Returns
  
  Overrides
  
  
  
  
    public AutoMlImageSegmentationInputs.Builder clone()
   
  Returns
  
  Overrides
  
  
  
  
    public String getBaseModelId()
   
   The ID of the base model. If it is specified, the new model will be
 trained based on the base model. Otherwise, the new model will be
 trained from scratch. The base model must be in the same
 Project and Location as the new Model to train, and have the same
 modelType.
 string base_model_id = 3;
    
      
        | Type | Description | 
      
        | String | The baseModelId. | 
    
  
  
  
  
    public ByteString getBaseModelIdBytes()
   
   The ID of the base model. If it is specified, the new model will be
 trained based on the base model. Otherwise, the new model will be
 trained from scratch. The base model must be in the same
 Project and Location as the new Model to train, and have the same
 modelType.
 string base_model_id = 3;
    
      
        | Type | Description | 
      
        | ByteString | The bytes for baseModelId. | 
    
  
  
  
  
    public long getBudgetMilliNodeHours()
   
   The training budget of creating this model, expressed in milli node
 hours i.e. 1,000 value in this field means 1 node hour. The actual
 metadata.costMilliNodeHours will be equal or less than this value.
 If further model training ceases to provide any improvements, it will
 stop without using the full budget and the metadata.successfulStopReason
 will be model-converged.
 Note, node_hour  = actual_hour * number_of_nodes_involved. Or
 actaul_wall_clock_hours = train_budget_milli_node_hours /
                           (number_of_nodes_involved * 1000)
 For modelType cloud-high-accuracy-1(default), the budget must be between
 20,000 and 2,000,000 milli node hours, inclusive. The default value is
 192,000 which represents one day in wall time
 (1000 milli * 24 hours * 8 nodes).
 int64 budget_milli_node_hours = 2;
    
      
        | Type | Description | 
      
        | long | The budgetMilliNodeHours. | 
    
  
  
  
  
    public AutoMlImageSegmentationInputs getDefaultInstanceForType()
   
  Returns
  
  
  
  
    public Descriptors.Descriptor getDescriptorForType()
   
  Returns
  
  Overrides
  
  
  
  
    public AutoMlImageSegmentationInputs.ModelType getModelType()
   
  
 .google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlImageSegmentationInputs.ModelType model_type = 1;
 
    public int getModelTypeValue()
   
  
 .google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlImageSegmentationInputs.ModelType model_type = 1;
 
    
      
        | Type | Description | 
      
        | int | The enum numeric value on the wire for modelType. | 
    
  
  
  
  
    protected GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable()
   
  Returns
  
  Overrides
  
  
  
  
    public final boolean isInitialized()
   
  Returns
  
  Overrides
  
  
  
  
    public AutoMlImageSegmentationInputs.Builder mergeFrom(AutoMlImageSegmentationInputs other)
   
  Parameter
  
  Returns
  
  
  
  
    public AutoMlImageSegmentationInputs.Builder mergeFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)
   
  Parameters
  
  Returns
  
  Overrides
  
  Exceptions
  
  
  
  
    public AutoMlImageSegmentationInputs.Builder mergeFrom(Message other)
   
  Parameter
  
  Returns
  
  Overrides
  
  
  
  
    public final AutoMlImageSegmentationInputs.Builder mergeUnknownFields(UnknownFieldSet unknownFields)
   
  Parameter
  
  Returns
  
  Overrides
  
  
  
  
    public AutoMlImageSegmentationInputs.Builder setBaseModelId(String value)
   
   The ID of the base model. If it is specified, the new model will be
 trained based on the base model. Otherwise, the new model will be
 trained from scratch. The base model must be in the same
 Project and Location as the new Model to train, and have the same
 modelType.
 string base_model_id = 3;
    
      
        | Name | Description | 
      
        | value | String
 The baseModelId to set. | 
    
  
  Returns
  
  
  
  
    public AutoMlImageSegmentationInputs.Builder setBaseModelIdBytes(ByteString value)
   
   The ID of the base model. If it is specified, the new model will be
 trained based on the base model. Otherwise, the new model will be
 trained from scratch. The base model must be in the same
 Project and Location as the new Model to train, and have the same
 modelType.
 string base_model_id = 3;
    
      
        | Name | Description | 
      
        | value | ByteString
 The bytes for baseModelId to set. | 
    
  
  Returns
  
  
  
  
    public AutoMlImageSegmentationInputs.Builder setBudgetMilliNodeHours(long value)
   
   The training budget of creating this model, expressed in milli node
 hours i.e. 1,000 value in this field means 1 node hour. The actual
 metadata.costMilliNodeHours will be equal or less than this value.
 If further model training ceases to provide any improvements, it will
 stop without using the full budget and the metadata.successfulStopReason
 will be model-converged.
 Note, node_hour  = actual_hour * number_of_nodes_involved. Or
 actaul_wall_clock_hours = train_budget_milli_node_hours /
                           (number_of_nodes_involved * 1000)
 For modelType cloud-high-accuracy-1(default), the budget must be between
 20,000 and 2,000,000 milli node hours, inclusive. The default value is
 192,000 which represents one day in wall time
 (1000 milli * 24 hours * 8 nodes).
 int64 budget_milli_node_hours = 2;
    
      
        | Name | Description | 
      
        | value | long
 The budgetMilliNodeHours to set. | 
    
  
  Returns
  
  
  
  
    public AutoMlImageSegmentationInputs.Builder setField(Descriptors.FieldDescriptor field, Object value)
   
  Parameters
  
  Returns
  
  Overrides
  
  
  
  
    public AutoMlImageSegmentationInputs.Builder setModelType(AutoMlImageSegmentationInputs.ModelType value)
   
  
 .google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlImageSegmentationInputs.ModelType model_type = 1;
 
    public AutoMlImageSegmentationInputs.Builder setModelTypeValue(int value)
   
  
 .google.cloud.aiplatform.v1beta1.schema.trainingjob.definition.AutoMlImageSegmentationInputs.ModelType model_type = 1;
 
    
      
        | Name | Description | 
      
        | value | int
 The enum numeric value on the wire for modelType to set. | 
    
  
  Returns
  
  
  
  
    public AutoMlImageSegmentationInputs.Builder setRepeatedField(Descriptors.FieldDescriptor field, int index, Object value)
   
  Parameters
  
  Returns
  
  Overrides
  
  
  
  
    public final AutoMlImageSegmentationInputs.Builder setUnknownFields(UnknownFieldSet unknownFields)
   
  Parameter
  
  Returns
  
  Overrides