public static final class IntegratedGradientsAttribution.Builder extends GeneratedMessageV3.Builder<IntegratedGradientsAttribution.Builder> implements IntegratedGradientsAttributionOrBuilder
   
   An attribution method that computes the Aumann-Shapley value taking advantage
 of the model's fully differentiable structure. Refer to this paper for
 more details: https://arxiv.org/abs/1703.01365
 Protobuf type google.cloud.aiplatform.v1beta1.IntegratedGradientsAttribution
    Inherited Members
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
      com.google.protobuf.GeneratedMessageV3.Builder.getUnknownFieldSetBuilder()
    
    
    
    
    
    
    
    
    
    
    
    
      com.google.protobuf.GeneratedMessageV3.Builder.mergeUnknownLengthDelimitedField(int,com.google.protobuf.ByteString)
    
    
      com.google.protobuf.GeneratedMessageV3.Builder.mergeUnknownVarintField(int,int)
    
    
    
    
    
      com.google.protobuf.GeneratedMessageV3.Builder.parseUnknownField(com.google.protobuf.CodedInputStream,com.google.protobuf.ExtensionRegistryLite,int)
    
    
    
    
      com.google.protobuf.GeneratedMessageV3.Builder.setUnknownFieldSetBuilder(com.google.protobuf.UnknownFieldSet.Builder)
    
    
    
    
    
    
    
    
    
    
    
    
   
  Static Methods
  
  
  
  
    public static final Descriptors.Descriptor getDescriptor()
   
  Returns
  
  Methods
  
  
  
  
    public IntegratedGradientsAttribution.Builder addRepeatedField(Descriptors.FieldDescriptor field, Object value)
   
  Parameters
  
  Returns
  
  Overrides
  
  
  
  
    public IntegratedGradientsAttribution build()
   
  Returns
  
  
  
  
    public IntegratedGradientsAttribution buildPartial()
   
  Returns
  
  
  
  
    public IntegratedGradientsAttribution.Builder clear()
   
  Returns
  
  Overrides
  
  
  
  
    public IntegratedGradientsAttribution.Builder clearBlurBaselineConfig()
   
   Config for IG with blur baseline.
 When enabled, a linear path from the maximally blurred image to the input
 image is created. Using a blurred baseline instead of zero (black image) is
 motivated by the BlurIG approach explained here:
 https://arxiv.org/abs/2004.03383
 .google.cloud.aiplatform.v1beta1.BlurBaselineConfig blur_baseline_config = 3;
    public IntegratedGradientsAttribution.Builder clearField(Descriptors.FieldDescriptor field)
   
  Parameter
  
  Returns
  
  Overrides
  
  
  
  
    public IntegratedGradientsAttribution.Builder clearOneof(Descriptors.OneofDescriptor oneof)
   
  Parameter
  
  Returns
  
  Overrides
  
  
  
  
    public IntegratedGradientsAttribution.Builder clearSmoothGradConfig()
   
   Config for SmoothGrad approximation of gradients.
 When enabled, the gradients are approximated by averaging the gradients
 from noisy samples in the vicinity of the inputs. Adding
 noise can help improve the computed gradients. Refer to this paper for more
 details: https://arxiv.org/pdf/1706.03825.pdf
 .google.cloud.aiplatform.v1beta1.SmoothGradConfig smooth_grad_config = 2;
    public IntegratedGradientsAttribution.Builder clearStepCount()
   
   Required. The number of steps for approximating the path integral.
 A good value to start is 50 and gradually increase until the
 sum to diff property is within the desired error range.
 Valid range of its value is [1, 100], inclusively.
 int32 step_count = 1 [(.google.api.field_behavior) = REQUIRED];
    public IntegratedGradientsAttribution.Builder clone()
   
  Returns
  
  Overrides
  
  
  
  
    public BlurBaselineConfig getBlurBaselineConfig()
   
   Config for IG with blur baseline.
 When enabled, a linear path from the maximally blurred image to the input
 image is created. Using a blurred baseline instead of zero (black image) is
 motivated by the BlurIG approach explained here:
 https://arxiv.org/abs/2004.03383
 .google.cloud.aiplatform.v1beta1.BlurBaselineConfig blur_baseline_config = 3;
    public BlurBaselineConfig.Builder getBlurBaselineConfigBuilder()
   
   Config for IG with blur baseline.
 When enabled, a linear path from the maximally blurred image to the input
 image is created. Using a blurred baseline instead of zero (black image) is
 motivated by the BlurIG approach explained here:
 https://arxiv.org/abs/2004.03383
 .google.cloud.aiplatform.v1beta1.BlurBaselineConfig blur_baseline_config = 3;
    public BlurBaselineConfigOrBuilder getBlurBaselineConfigOrBuilder()
   
   Config for IG with blur baseline.
 When enabled, a linear path from the maximally blurred image to the input
 image is created. Using a blurred baseline instead of zero (black image) is
 motivated by the BlurIG approach explained here:
 https://arxiv.org/abs/2004.03383
 .google.cloud.aiplatform.v1beta1.BlurBaselineConfig blur_baseline_config = 3;
    public IntegratedGradientsAttribution getDefaultInstanceForType()
   
  Returns
  
  
  
  
    public Descriptors.Descriptor getDescriptorForType()
   
  Returns
  
  Overrides
  
  
  
  
    public SmoothGradConfig getSmoothGradConfig()
   
   Config for SmoothGrad approximation of gradients.
 When enabled, the gradients are approximated by averaging the gradients
 from noisy samples in the vicinity of the inputs. Adding
 noise can help improve the computed gradients. Refer to this paper for more
 details: https://arxiv.org/pdf/1706.03825.pdf
 .google.cloud.aiplatform.v1beta1.SmoothGradConfig smooth_grad_config = 2;
    public SmoothGradConfig.Builder getSmoothGradConfigBuilder()
   
   Config for SmoothGrad approximation of gradients.
 When enabled, the gradients are approximated by averaging the gradients
 from noisy samples in the vicinity of the inputs. Adding
 noise can help improve the computed gradients. Refer to this paper for more
 details: https://arxiv.org/pdf/1706.03825.pdf
 .google.cloud.aiplatform.v1beta1.SmoothGradConfig smooth_grad_config = 2;
    public SmoothGradConfigOrBuilder getSmoothGradConfigOrBuilder()
   
   Config for SmoothGrad approximation of gradients.
 When enabled, the gradients are approximated by averaging the gradients
 from noisy samples in the vicinity of the inputs. Adding
 noise can help improve the computed gradients. Refer to this paper for more
 details: https://arxiv.org/pdf/1706.03825.pdf
 .google.cloud.aiplatform.v1beta1.SmoothGradConfig smooth_grad_config = 2;
    public int getStepCount()
   
   Required. The number of steps for approximating the path integral.
 A good value to start is 50 and gradually increase until the
 sum to diff property is within the desired error range.
 Valid range of its value is [1, 100], inclusively.
 int32 step_count = 1 [(.google.api.field_behavior) = REQUIRED];
    
      
        | Type | Description | 
      
        | int | The stepCount. | 
    
  
  
  
  
    public boolean hasBlurBaselineConfig()
   
   Config for IG with blur baseline.
 When enabled, a linear path from the maximally blurred image to the input
 image is created. Using a blurred baseline instead of zero (black image) is
 motivated by the BlurIG approach explained here:
 https://arxiv.org/abs/2004.03383
 .google.cloud.aiplatform.v1beta1.BlurBaselineConfig blur_baseline_config = 3;
    
      
        | Type | Description | 
      
        | boolean | Whether the blurBaselineConfig field is set. | 
    
  
  
  
  
    public boolean hasSmoothGradConfig()
   
   Config for SmoothGrad approximation of gradients.
 When enabled, the gradients are approximated by averaging the gradients
 from noisy samples in the vicinity of the inputs. Adding
 noise can help improve the computed gradients. Refer to this paper for more
 details: https://arxiv.org/pdf/1706.03825.pdf
 .google.cloud.aiplatform.v1beta1.SmoothGradConfig smooth_grad_config = 2;
    
      
        | Type | Description | 
      
        | boolean | Whether the smoothGradConfig field is set. | 
    
  
  
  
  
    protected GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable()
   
  Returns
  
  Overrides
  
  
  
  
    public final boolean isInitialized()
   
  Returns
  
  Overrides
  
  
  
  
    public IntegratedGradientsAttribution.Builder mergeBlurBaselineConfig(BlurBaselineConfig value)
   
   Config for IG with blur baseline.
 When enabled, a linear path from the maximally blurred image to the input
 image is created. Using a blurred baseline instead of zero (black image) is
 motivated by the BlurIG approach explained here:
 https://arxiv.org/abs/2004.03383
 .google.cloud.aiplatform.v1beta1.BlurBaselineConfig blur_baseline_config = 3;
    public IntegratedGradientsAttribution.Builder mergeFrom(IntegratedGradientsAttribution other)
   
  Parameter
  
  Returns
  
  
  
  
    public IntegratedGradientsAttribution.Builder mergeFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)
   
  Parameters
  
  Returns
  
  Overrides
  
  Exceptions
  
  
  
  
    public IntegratedGradientsAttribution.Builder mergeFrom(Message other)
   
  Parameter
  
  Returns
  
  Overrides
  
  
  
  
    public IntegratedGradientsAttribution.Builder mergeSmoothGradConfig(SmoothGradConfig value)
   
   Config for SmoothGrad approximation of gradients.
 When enabled, the gradients are approximated by averaging the gradients
 from noisy samples in the vicinity of the inputs. Adding
 noise can help improve the computed gradients. Refer to this paper for more
 details: https://arxiv.org/pdf/1706.03825.pdf
 .google.cloud.aiplatform.v1beta1.SmoothGradConfig smooth_grad_config = 2;
    public final IntegratedGradientsAttribution.Builder mergeUnknownFields(UnknownFieldSet unknownFields)
   
  Parameter
  
  Returns
  
  Overrides
  
  
  
  
    public IntegratedGradientsAttribution.Builder setBlurBaselineConfig(BlurBaselineConfig value)
   
   Config for IG with blur baseline.
 When enabled, a linear path from the maximally blurred image to the input
 image is created. Using a blurred baseline instead of zero (black image) is
 motivated by the BlurIG approach explained here:
 https://arxiv.org/abs/2004.03383
 .google.cloud.aiplatform.v1beta1.BlurBaselineConfig blur_baseline_config = 3;
    public IntegratedGradientsAttribution.Builder setBlurBaselineConfig(BlurBaselineConfig.Builder builderForValue)
   
   Config for IG with blur baseline.
 When enabled, a linear path from the maximally blurred image to the input
 image is created. Using a blurred baseline instead of zero (black image) is
 motivated by the BlurIG approach explained here:
 https://arxiv.org/abs/2004.03383
 .google.cloud.aiplatform.v1beta1.BlurBaselineConfig blur_baseline_config = 3;
    public IntegratedGradientsAttribution.Builder setField(Descriptors.FieldDescriptor field, Object value)
   
  Parameters
  
  Returns
  
  Overrides
  
  
  
  
    public IntegratedGradientsAttribution.Builder setRepeatedField(Descriptors.FieldDescriptor field, int index, Object value)
   
  Parameters
  
  Returns
  
  Overrides
  
  
  
  
    public IntegratedGradientsAttribution.Builder setSmoothGradConfig(SmoothGradConfig value)
   
   Config for SmoothGrad approximation of gradients.
 When enabled, the gradients are approximated by averaging the gradients
 from noisy samples in the vicinity of the inputs. Adding
 noise can help improve the computed gradients. Refer to this paper for more
 details: https://arxiv.org/pdf/1706.03825.pdf
 .google.cloud.aiplatform.v1beta1.SmoothGradConfig smooth_grad_config = 2;
    public IntegratedGradientsAttribution.Builder setSmoothGradConfig(SmoothGradConfig.Builder builderForValue)
   
   Config for SmoothGrad approximation of gradients.
 When enabled, the gradients are approximated by averaging the gradients
 from noisy samples in the vicinity of the inputs. Adding
 noise can help improve the computed gradients. Refer to this paper for more
 details: https://arxiv.org/pdf/1706.03825.pdf
 .google.cloud.aiplatform.v1beta1.SmoothGradConfig smooth_grad_config = 2;
    public IntegratedGradientsAttribution.Builder setStepCount(int value)
   
   Required. The number of steps for approximating the path integral.
 A good value to start is 50 and gradually increase until the
 sum to diff property is within the desired error range.
 Valid range of its value is [1, 100], inclusively.
 int32 step_count = 1 [(.google.api.field_behavior) = REQUIRED];
    
      
        | Name | Description | 
      
        | value | int
 The stepCount to set. | 
    
  
  Returns
  
  
  
  
    public final IntegratedGradientsAttribution.Builder setUnknownFields(UnknownFieldSet unknownFields)
   
  Parameter
  
  Returns
  
  Overrides