public static final class ExplanationMetadata.Builder extends GeneratedMessageV3.Builder<ExplanationMetadata.Builder> implements ExplanationMetadataOrBuilder
   
   Metadata describing the Model's input and output for explanation.
 Protobuf type google.cloud.aiplatform.v1.ExplanationMetadata
    Inherited Members
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
      com.google.protobuf.GeneratedMessageV3.Builder.getUnknownFieldSetBuilder()
    
    
    
    
    
    
    
    
    
    
    
    
      com.google.protobuf.GeneratedMessageV3.Builder.mergeUnknownLengthDelimitedField(int,com.google.protobuf.ByteString)
    
    
      com.google.protobuf.GeneratedMessageV3.Builder.mergeUnknownVarintField(int,int)
    
    
    
    
    
      com.google.protobuf.GeneratedMessageV3.Builder.parseUnknownField(com.google.protobuf.CodedInputStream,com.google.protobuf.ExtensionRegistryLite,int)
    
    
    
    
      com.google.protobuf.GeneratedMessageV3.Builder.setUnknownFieldSetBuilder(com.google.protobuf.UnknownFieldSet.Builder)
    
    
    
    
    
    
    
    
    
    
    
    
   
  Static Methods
  
  
  
  
    public static final Descriptors.Descriptor getDescriptor()
   
  
  Methods
  
  
  
  
    public ExplanationMetadata.Builder addRepeatedField(Descriptors.FieldDescriptor field, Object value)
   
  
  
  Overrides
  
  
  
  
    public ExplanationMetadata build()
   
  
  
  
  
    public ExplanationMetadata buildPartial()
   
  
  
  
  
    public ExplanationMetadata.Builder clear()
   
  
  Overrides
  
  
  
  
    public ExplanationMetadata.Builder clearFeatureAttributionsSchemaUri()
   
   Points to a YAML file stored on Google Cloud Storage describing the format
 of the feature
 attributions.
 The schema is defined as an OpenAPI 3.0.2 Schema
 Object.
 AutoML tabular Models always have this field populated by Vertex AI.
 Note: The URI given on output may be different, including the URI scheme,
 than the one given on input. The output URI will point to a location where
 the user only has a read access.
 string feature_attributions_schema_uri = 3;
    public ExplanationMetadata.Builder clearField(Descriptors.FieldDescriptor field)
   
  
  
  Overrides
  
  
  
  
    public ExplanationMetadata.Builder clearInputs()
   
  
  
  
  
    public ExplanationMetadata.Builder clearLatentSpaceSource()
   
   Name of the source to generate embeddings for example based explanations.
 string latent_space_source = 5;
    public ExplanationMetadata.Builder clearOneof(Descriptors.OneofDescriptor oneof)
   
  
  
  Overrides
  
  
  
  
    public ExplanationMetadata.Builder clearOutputs()
   
  
  
  
  
    public ExplanationMetadata.Builder clone()
   
  
  Overrides
  
  
  
  
    public boolean containsInputs(String key)
   
   Required. Map from feature names to feature input metadata. Keys are the
 name of the features. Values are the specification of the feature.
 An empty InputMetadata is valid. It describes a text feature which has the
 name specified as the key in
 ExplanationMetadata.inputs.
 The baseline of the empty feature is chosen by Vertex AI.
 For Vertex AI-provided Tensorflow images, the key can be any friendly
 name of the feature. Once specified,
 featureAttributions
 are keyed by this key (if not grouped with another feature).
 For custom images, the key must match with the key in
 instance.
 
 map<string, .google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata> inputs = 1 [(.google.api.field_behavior) = REQUIRED];
 
    
      
        | Parameter | 
      
        | Name | Description | 
      
        | key | String
 | 
    
  
  
  
  
  
    public boolean containsOutputs(String key)
   
   Required. Map from output names to output metadata.
 For Vertex AI-provided Tensorflow images, keys can be any user defined
 string that consists of any UTF-8 characters.
 For custom images, keys are the name of the output field in the prediction
 to be explained.
 Currently only one key is allowed.
 
 map<string, .google.cloud.aiplatform.v1.ExplanationMetadata.OutputMetadata> outputs = 2 [(.google.api.field_behavior) = REQUIRED];
 
    
      
        | Parameter | 
      
        | Name | Description | 
      
        | key | String
 | 
    
  
  
  
  
  
    public ExplanationMetadata getDefaultInstanceForType()
   
  
  
  
  
    public Descriptors.Descriptor getDescriptorForType()
   
  
  Overrides
  
  
  
  
    public String getFeatureAttributionsSchemaUri()
   
   Points to a YAML file stored on Google Cloud Storage describing the format
 of the feature
 attributions.
 The schema is defined as an OpenAPI 3.0.2 Schema
 Object.
 AutoML tabular Models always have this field populated by Vertex AI.
 Note: The URI given on output may be different, including the URI scheme,
 than the one given on input. The output URI will point to a location where
 the user only has a read access.
 string feature_attributions_schema_uri = 3;
    
      
        | Returns | 
      
        | Type | Description | 
      
        | String | The featureAttributionsSchemaUri. | 
    
  
  
  
  
    public ByteString getFeatureAttributionsSchemaUriBytes()
   
   Points to a YAML file stored on Google Cloud Storage describing the format
 of the feature
 attributions.
 The schema is defined as an OpenAPI 3.0.2 Schema
 Object.
 AutoML tabular Models always have this field populated by Vertex AI.
 Note: The URI given on output may be different, including the URI scheme,
 than the one given on input. The output URI will point to a location where
 the user only has a read access.
 string feature_attributions_schema_uri = 3;
    
      
        | Returns | 
      
        | Type | Description | 
      
        | ByteString | The bytes for featureAttributionsSchemaUri. | 
    
  
  
  
  
    public Map<String,ExplanationMetadata.InputMetadata> getInputs()
   
  
  
  
  
  
    public int getInputsCount()
   
   Required. Map from feature names to feature input metadata. Keys are the
 name of the features. Values are the specification of the feature.
 An empty InputMetadata is valid. It describes a text feature which has the
 name specified as the key in
 ExplanationMetadata.inputs.
 The baseline of the empty feature is chosen by Vertex AI.
 For Vertex AI-provided Tensorflow images, the key can be any friendly
 name of the feature. Once specified,
 featureAttributions
 are keyed by this key (if not grouped with another feature).
 For custom images, the key must match with the key in
 instance.
 
 map<string, .google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata> inputs = 1 [(.google.api.field_behavior) = REQUIRED];
 
    
      
        | Returns | 
      
        | Type | Description | 
      
        | int |  | 
    
  
  
  
  
    public Map<String,ExplanationMetadata.InputMetadata> getInputsMap()
   
   Required. Map from feature names to feature input metadata. Keys are the
 name of the features. Values are the specification of the feature.
 An empty InputMetadata is valid. It describes a text feature which has the
 name specified as the key in
 ExplanationMetadata.inputs.
 The baseline of the empty feature is chosen by Vertex AI.
 For Vertex AI-provided Tensorflow images, the key can be any friendly
 name of the feature. Once specified,
 featureAttributions
 are keyed by this key (if not grouped with another feature).
 For custom images, the key must match with the key in
 instance.
 
 map<string, .google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata> inputs = 1 [(.google.api.field_behavior) = REQUIRED];
 
    public ExplanationMetadata.InputMetadata getInputsOrDefault(String key, ExplanationMetadata.InputMetadata defaultValue)
   
   Required. Map from feature names to feature input metadata. Keys are the
 name of the features. Values are the specification of the feature.
 An empty InputMetadata is valid. It describes a text feature which has the
 name specified as the key in
 ExplanationMetadata.inputs.
 The baseline of the empty feature is chosen by Vertex AI.
 For Vertex AI-provided Tensorflow images, the key can be any friendly
 name of the feature. Once specified,
 featureAttributions
 are keyed by this key (if not grouped with another feature).
 For custom images, the key must match with the key in
 instance.
 
 map<string, .google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata> inputs = 1 [(.google.api.field_behavior) = REQUIRED];
 
    public ExplanationMetadata.InputMetadata getInputsOrThrow(String key)
   
   Required. Map from feature names to feature input metadata. Keys are the
 name of the features. Values are the specification of the feature.
 An empty InputMetadata is valid. It describes a text feature which has the
 name specified as the key in
 ExplanationMetadata.inputs.
 The baseline of the empty feature is chosen by Vertex AI.
 For Vertex AI-provided Tensorflow images, the key can be any friendly
 name of the feature. Once specified,
 featureAttributions
 are keyed by this key (if not grouped with another feature).
 For custom images, the key must match with the key in
 instance.
 
 map<string, .google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata> inputs = 1 [(.google.api.field_behavior) = REQUIRED];
 
    
      
        | Parameter | 
      
        | Name | Description | 
      
        | key | String
 | 
    
  
  
  
  
  
    public String getLatentSpaceSource()
   
   Name of the source to generate embeddings for example based explanations.
 string latent_space_source = 5;
    
      
        | Returns | 
      
        | Type | Description | 
      
        | String | The latentSpaceSource. | 
    
  
  
  
  
    public ByteString getLatentSpaceSourceBytes()
   
   Name of the source to generate embeddings for example based explanations.
 string latent_space_source = 5;
    
      
        | Returns | 
      
        | Type | Description | 
      
        | ByteString | The bytes for latentSpaceSource. | 
    
  
  
  
  
    public Map<String,ExplanationMetadata.InputMetadata> getMutableInputs()
   
  Use alternate mutation accessors instead.
    public Map<String,ExplanationMetadata.OutputMetadata> getMutableOutputs()
   
  Use alternate mutation accessors instead.
    public Map<String,ExplanationMetadata.OutputMetadata> getOutputs()
   
  
  
  
  
  
    public int getOutputsCount()
   
   Required. Map from output names to output metadata.
 For Vertex AI-provided Tensorflow images, keys can be any user defined
 string that consists of any UTF-8 characters.
 For custom images, keys are the name of the output field in the prediction
 to be explained.
 Currently only one key is allowed.
 
 map<string, .google.cloud.aiplatform.v1.ExplanationMetadata.OutputMetadata> outputs = 2 [(.google.api.field_behavior) = REQUIRED];
 
    
      
        | Returns | 
      
        | Type | Description | 
      
        | int |  | 
    
  
  
  
  
    public Map<String,ExplanationMetadata.OutputMetadata> getOutputsMap()
   
   Required. Map from output names to output metadata.
 For Vertex AI-provided Tensorflow images, keys can be any user defined
 string that consists of any UTF-8 characters.
 For custom images, keys are the name of the output field in the prediction
 to be explained.
 Currently only one key is allowed.
 
 map<string, .google.cloud.aiplatform.v1.ExplanationMetadata.OutputMetadata> outputs = 2 [(.google.api.field_behavior) = REQUIRED];
 
    public ExplanationMetadata.OutputMetadata getOutputsOrDefault(String key, ExplanationMetadata.OutputMetadata defaultValue)
   
   Required. Map from output names to output metadata.
 For Vertex AI-provided Tensorflow images, keys can be any user defined
 string that consists of any UTF-8 characters.
 For custom images, keys are the name of the output field in the prediction
 to be explained.
 Currently only one key is allowed.
 
 map<string, .google.cloud.aiplatform.v1.ExplanationMetadata.OutputMetadata> outputs = 2 [(.google.api.field_behavior) = REQUIRED];
 
    public ExplanationMetadata.OutputMetadata getOutputsOrThrow(String key)
   
   Required. Map from output names to output metadata.
 For Vertex AI-provided Tensorflow images, keys can be any user defined
 string that consists of any UTF-8 characters.
 For custom images, keys are the name of the output field in the prediction
 to be explained.
 Currently only one key is allowed.
 
 map<string, .google.cloud.aiplatform.v1.ExplanationMetadata.OutputMetadata> outputs = 2 [(.google.api.field_behavior) = REQUIRED];
 
    
      
        | Parameter | 
      
        | Name | Description | 
      
        | key | String
 | 
    
  
  
  
  
  
    protected GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable()
   
  
  Overrides
  
  
  
  
    protected MapField internalGetMapField(int number)
   
  
    
      
        | Parameter | 
      
        | Name | Description | 
      
        | number | int
 | 
    
  
  
  Overrides
  
  
  
  
    protected MapField internalGetMutableMapField(int number)
   
  
    
      
        | Parameter | 
      
        | Name | Description | 
      
        | number | int
 | 
    
  
  
  Overrides
  
  
  
  
    public final boolean isInitialized()
   
  
  Overrides
  
  
  
  
    public ExplanationMetadata.Builder mergeFrom(ExplanationMetadata other)
   
  
  
  
  
  
    public ExplanationMetadata.Builder mergeFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)
   
  
  
  Overrides
  
  
  
  
  
    public ExplanationMetadata.Builder mergeFrom(Message other)
   
  
    
      
        | Parameter | 
      
        | Name | Description | 
      
        | other | Message
 | 
    
  
  
  Overrides
  
  
  
  
    public final ExplanationMetadata.Builder mergeUnknownFields(UnknownFieldSet unknownFields)
   
  
  
  Overrides
  
  
  
  
    public ExplanationMetadata.Builder putAllInputs(Map<String,ExplanationMetadata.InputMetadata> values)
   
   Required. Map from feature names to feature input metadata. Keys are the
 name of the features. Values are the specification of the feature.
 An empty InputMetadata is valid. It describes a text feature which has the
 name specified as the key in
 ExplanationMetadata.inputs.
 The baseline of the empty feature is chosen by Vertex AI.
 For Vertex AI-provided Tensorflow images, the key can be any friendly
 name of the feature. Once specified,
 featureAttributions
 are keyed by this key (if not grouped with another feature).
 For custom images, the key must match with the key in
 instance.
 
 map<string, .google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata> inputs = 1 [(.google.api.field_behavior) = REQUIRED];
 
    public ExplanationMetadata.Builder putAllOutputs(Map<String,ExplanationMetadata.OutputMetadata> values)
   
   Required. Map from output names to output metadata.
 For Vertex AI-provided Tensorflow images, keys can be any user defined
 string that consists of any UTF-8 characters.
 For custom images, keys are the name of the output field in the prediction
 to be explained.
 Currently only one key is allowed.
 
 map<string, .google.cloud.aiplatform.v1.ExplanationMetadata.OutputMetadata> outputs = 2 [(.google.api.field_behavior) = REQUIRED];
 
    public ExplanationMetadata.Builder putInputs(String key, ExplanationMetadata.InputMetadata value)
   
   Required. Map from feature names to feature input metadata. Keys are the
 name of the features. Values are the specification of the feature.
 An empty InputMetadata is valid. It describes a text feature which has the
 name specified as the key in
 ExplanationMetadata.inputs.
 The baseline of the empty feature is chosen by Vertex AI.
 For Vertex AI-provided Tensorflow images, the key can be any friendly
 name of the feature. Once specified,
 featureAttributions
 are keyed by this key (if not grouped with another feature).
 For custom images, the key must match with the key in
 instance.
 
 map<string, .google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata> inputs = 1 [(.google.api.field_behavior) = REQUIRED];
 
    public ExplanationMetadata.Builder putOutputs(String key, ExplanationMetadata.OutputMetadata value)
   
   Required. Map from output names to output metadata.
 For Vertex AI-provided Tensorflow images, keys can be any user defined
 string that consists of any UTF-8 characters.
 For custom images, keys are the name of the output field in the prediction
 to be explained.
 Currently only one key is allowed.
 
 map<string, .google.cloud.aiplatform.v1.ExplanationMetadata.OutputMetadata> outputs = 2 [(.google.api.field_behavior) = REQUIRED];
 
    public ExplanationMetadata.Builder removeInputs(String key)
   
   Required. Map from feature names to feature input metadata. Keys are the
 name of the features. Values are the specification of the feature.
 An empty InputMetadata is valid. It describes a text feature which has the
 name specified as the key in
 ExplanationMetadata.inputs.
 The baseline of the empty feature is chosen by Vertex AI.
 For Vertex AI-provided Tensorflow images, the key can be any friendly
 name of the feature. Once specified,
 featureAttributions
 are keyed by this key (if not grouped with another feature).
 For custom images, the key must match with the key in
 instance.
 
 map<string, .google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata> inputs = 1 [(.google.api.field_behavior) = REQUIRED];
 
    
      
        | Parameter | 
      
        | Name | Description | 
      
        | key | String
 | 
    
  
  
  
  
  
    public ExplanationMetadata.Builder removeOutputs(String key)
   
   Required. Map from output names to output metadata.
 For Vertex AI-provided Tensorflow images, keys can be any user defined
 string that consists of any UTF-8 characters.
 For custom images, keys are the name of the output field in the prediction
 to be explained.
 Currently only one key is allowed.
 
 map<string, .google.cloud.aiplatform.v1.ExplanationMetadata.OutputMetadata> outputs = 2 [(.google.api.field_behavior) = REQUIRED];
 
    
      
        | Parameter | 
      
        | Name | Description | 
      
        | key | String
 | 
    
  
  
  
  
  
    public ExplanationMetadata.Builder setFeatureAttributionsSchemaUri(String value)
   
   Points to a YAML file stored on Google Cloud Storage describing the format
 of the feature
 attributions.
 The schema is defined as an OpenAPI 3.0.2 Schema
 Object.
 AutoML tabular Models always have this field populated by Vertex AI.
 Note: The URI given on output may be different, including the URI scheme,
 than the one given on input. The output URI will point to a location where
 the user only has a read access.
 string feature_attributions_schema_uri = 3;
    
      
        | Parameter | 
      
        | Name | Description | 
      
        | value | String
 The featureAttributionsSchemaUri to set. | 
    
  
  
  
  
  
    public ExplanationMetadata.Builder setFeatureAttributionsSchemaUriBytes(ByteString value)
   
   Points to a YAML file stored on Google Cloud Storage describing the format
 of the feature
 attributions.
 The schema is defined as an OpenAPI 3.0.2 Schema
 Object.
 AutoML tabular Models always have this field populated by Vertex AI.
 Note: The URI given on output may be different, including the URI scheme,
 than the one given on input. The output URI will point to a location where
 the user only has a read access.
 string feature_attributions_schema_uri = 3;
    
      
        | Parameter | 
      
        | Name | Description | 
      
        | value | ByteString
 The bytes for featureAttributionsSchemaUri to set. | 
    
  
  
  
  
  
    public ExplanationMetadata.Builder setField(Descriptors.FieldDescriptor field, Object value)
   
  
  
  Overrides
  
  
  
  
    public ExplanationMetadata.Builder setLatentSpaceSource(String value)
   
   Name of the source to generate embeddings for example based explanations.
 string latent_space_source = 5;
    
      
        | Parameter | 
      
        | Name | Description | 
      
        | value | String
 The latentSpaceSource to set. | 
    
  
  
  
  
  
    public ExplanationMetadata.Builder setLatentSpaceSourceBytes(ByteString value)
   
   Name of the source to generate embeddings for example based explanations.
 string latent_space_source = 5;
    
      
        | Parameter | 
      
        | Name | Description | 
      
        | value | ByteString
 The bytes for latentSpaceSource to set. | 
    
  
  
  
  
  
    public ExplanationMetadata.Builder setRepeatedField(Descriptors.FieldDescriptor field, int index, Object value)
   
  
  
  Overrides
  
  
  
  
    public final ExplanationMetadata.Builder setUnknownFields(UnknownFieldSet unknownFields)
   
  
  
  Overrides