- 3.79.0 (latest)
 - 3.77.0
 - 3.76.0
 - 3.75.0
 - 3.74.0
 - 3.73.0
 - 3.71.0
 - 3.69.0
 - 3.68.0
 - 3.65.0
 - 3.64.0
 - 3.63.0
 - 3.61.0
 - 3.60.0
 - 3.59.0
 - 3.58.0
 - 3.57.0
 - 3.56.0
 - 3.55.0
 - 3.54.0
 - 3.53.0
 - 3.52.0
 - 3.50.0
 - 3.49.0
 - 3.48.0
 - 3.47.0
 - 3.46.0
 - 3.45.0
 - 3.44.0
 - 3.43.0
 - 3.42.0
 - 3.41.0
 - 3.40.0
 - 3.38.0
 - 3.37.0
 - 3.36.0
 - 3.35.0
 - 3.34.0
 - 3.33.0
 - 3.32.0
 - 3.31.0
 - 3.30.0
 - 3.29.0
 - 3.28.0
 - 3.25.0
 - 3.24.0
 - 3.23.0
 - 3.22.0
 - 3.21.0
 - 3.20.0
 - 3.19.0
 - 3.18.0
 - 3.17.0
 - 3.16.0
 - 3.15.0
 - 3.14.0
 - 3.13.0
 - 3.12.0
 - 3.11.0
 - 3.10.0
 - 3.9.0
 - 3.8.0
 - 3.7.0
 - 3.6.0
 - 3.5.0
 - 3.4.2
 - 3.3.0
 - 3.2.0
 - 3.0.0
 - 2.9.8
 - 2.8.9
 - 2.7.4
 - 2.5.3
 - 2.4.0
 
public interface ExplanationParametersOrBuilder extends MessageOrBuilderImplements
MessageOrBuilderMethods
getExamples()
public abstract Examples getExamples()Example-based explanations that returns the nearest neighbors from the provided dataset.
 .google.cloud.aiplatform.v1beta1.Examples examples = 7;
| Returns | |
|---|---|
| Type | Description | 
Examples | 
        The examples.  | 
      
getExamplesOrBuilder()
public abstract ExamplesOrBuilder getExamplesOrBuilder()Example-based explanations that returns the nearest neighbors from the provided dataset.
 .google.cloud.aiplatform.v1beta1.Examples examples = 7;
| Returns | |
|---|---|
| Type | Description | 
ExamplesOrBuilder | 
        |
getIntegratedGradientsAttribution()
public abstract IntegratedGradientsAttribution getIntegratedGradientsAttribution()An attribution method that computes Aumann-Shapley values taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1703.01365
 
 .google.cloud.aiplatform.v1beta1.IntegratedGradientsAttribution integrated_gradients_attribution = 2;
 
| Returns | |
|---|---|
| Type | Description | 
IntegratedGradientsAttribution | 
        The integratedGradientsAttribution.  | 
      
getIntegratedGradientsAttributionOrBuilder()
public abstract IntegratedGradientsAttributionOrBuilder getIntegratedGradientsAttributionOrBuilder()An attribution method that computes Aumann-Shapley values taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1703.01365
 
 .google.cloud.aiplatform.v1beta1.IntegratedGradientsAttribution integrated_gradients_attribution = 2;
 
| Returns | |
|---|---|
| Type | Description | 
IntegratedGradientsAttributionOrBuilder | 
        |
getMethodCase()
public abstract ExplanationParameters.MethodCase getMethodCase()| Returns | |
|---|---|
| Type | Description | 
ExplanationParameters.MethodCase | 
        |
getOutputIndices()
public abstract ListValue getOutputIndices()If populated, only returns attributions that have output_index contained in output_indices. It must be an ndarray of integers, with the same shape of the output it's explaining.
If not populated, returns attributions for top_k indices of outputs. If neither top_k nor output_indices is populated, returns the argmax index of the outputs.
Only applicable to Models that predict multiple outputs (e,g, multi-class Models that predict multiple classes).
 .google.protobuf.ListValue output_indices = 5;
| Returns | |
|---|---|
| Type | Description | 
ListValue | 
        The outputIndices.  | 
      
getOutputIndicesOrBuilder()
public abstract ListValueOrBuilder getOutputIndicesOrBuilder()If populated, only returns attributions that have output_index contained in output_indices. It must be an ndarray of integers, with the same shape of the output it's explaining.
If not populated, returns attributions for top_k indices of outputs. If neither top_k nor output_indices is populated, returns the argmax index of the outputs.
Only applicable to Models that predict multiple outputs (e,g, multi-class Models that predict multiple classes).
 .google.protobuf.ListValue output_indices = 5;
| Returns | |
|---|---|
| Type | Description | 
ListValueOrBuilder | 
        |
getSampledShapleyAttribution()
public abstract SampledShapleyAttribution getSampledShapleyAttribution()An attribution method that approximates Shapley values for features that contribute to the label being predicted. A sampling strategy is used to approximate the value rather than considering all subsets of features. Refer to this paper for model details: https://arxiv.org/abs/1306.4265.
 
 .google.cloud.aiplatform.v1beta1.SampledShapleyAttribution sampled_shapley_attribution = 1;
 
| Returns | |
|---|---|
| Type | Description | 
SampledShapleyAttribution | 
        The sampledShapleyAttribution.  | 
      
getSampledShapleyAttributionOrBuilder()
public abstract SampledShapleyAttributionOrBuilder getSampledShapleyAttributionOrBuilder()An attribution method that approximates Shapley values for features that contribute to the label being predicted. A sampling strategy is used to approximate the value rather than considering all subsets of features. Refer to this paper for model details: https://arxiv.org/abs/1306.4265.
 
 .google.cloud.aiplatform.v1beta1.SampledShapleyAttribution sampled_shapley_attribution = 1;
 
| Returns | |
|---|---|
| Type | Description | 
SampledShapleyAttributionOrBuilder | 
        |
getTopK()
public abstract int getTopK()If populated, returns attributions for top K indices of outputs (defaults to 1). Only applies to Models that predicts more than one outputs (e,g, multi-class Models). When set to -1, returns explanations for all outputs.
 int32 top_k = 4;
| Returns | |
|---|---|
| Type | Description | 
int | 
        The topK.  | 
      
getXraiAttribution()
public abstract XraiAttribution getXraiAttribution()An attribution method that redistributes Integrated Gradients attribution to segmented regions, taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1906.02825
XRAI currently performs better on natural images, like a picture of a house or an animal. If the images are taken in artificial environments, like a lab or manufacturing line, or from diagnostic equipment, like x-rays or quality-control cameras, use Integrated Gradients instead.
 .google.cloud.aiplatform.v1beta1.XraiAttribution xrai_attribution = 3;
| Returns | |
|---|---|
| Type | Description | 
XraiAttribution | 
        The xraiAttribution.  | 
      
getXraiAttributionOrBuilder()
public abstract XraiAttributionOrBuilder getXraiAttributionOrBuilder()An attribution method that redistributes Integrated Gradients attribution to segmented regions, taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1906.02825
XRAI currently performs better on natural images, like a picture of a house or an animal. If the images are taken in artificial environments, like a lab or manufacturing line, or from diagnostic equipment, like x-rays or quality-control cameras, use Integrated Gradients instead.
 .google.cloud.aiplatform.v1beta1.XraiAttribution xrai_attribution = 3;
| Returns | |
|---|---|
| Type | Description | 
XraiAttributionOrBuilder | 
        |
hasExamples()
public abstract boolean hasExamples()Example-based explanations that returns the nearest neighbors from the provided dataset.
 .google.cloud.aiplatform.v1beta1.Examples examples = 7;
| Returns | |
|---|---|
| Type | Description | 
boolean | 
        Whether the examples field is set.  | 
      
hasIntegratedGradientsAttribution()
public abstract boolean hasIntegratedGradientsAttribution()An attribution method that computes Aumann-Shapley values taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1703.01365
 
 .google.cloud.aiplatform.v1beta1.IntegratedGradientsAttribution integrated_gradients_attribution = 2;
 
| Returns | |
|---|---|
| Type | Description | 
boolean | 
        Whether the integratedGradientsAttribution field is set.  | 
      
hasOutputIndices()
public abstract boolean hasOutputIndices()If populated, only returns attributions that have output_index contained in output_indices. It must be an ndarray of integers, with the same shape of the output it's explaining.
If not populated, returns attributions for top_k indices of outputs. If neither top_k nor output_indices is populated, returns the argmax index of the outputs.
Only applicable to Models that predict multiple outputs (e,g, multi-class Models that predict multiple classes).
 .google.protobuf.ListValue output_indices = 5;
| Returns | |
|---|---|
| Type | Description | 
boolean | 
        Whether the outputIndices field is set.  | 
      
hasSampledShapleyAttribution()
public abstract boolean hasSampledShapleyAttribution()An attribution method that approximates Shapley values for features that contribute to the label being predicted. A sampling strategy is used to approximate the value rather than considering all subsets of features. Refer to this paper for model details: https://arxiv.org/abs/1306.4265.
 
 .google.cloud.aiplatform.v1beta1.SampledShapleyAttribution sampled_shapley_attribution = 1;
 
| Returns | |
|---|---|
| Type | Description | 
boolean | 
        Whether the sampledShapleyAttribution field is set.  | 
      
hasXraiAttribution()
public abstract boolean hasXraiAttribution()An attribution method that redistributes Integrated Gradients attribution to segmented regions, taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1906.02825
XRAI currently performs better on natural images, like a picture of a house or an animal. If the images are taken in artificial environments, like a lab or manufacturing line, or from diagnostic equipment, like x-rays or quality-control cameras, use Integrated Gradients instead.
 .google.cloud.aiplatform.v1beta1.XraiAttribution xrai_attribution = 3;
| Returns | |
|---|---|
| Type | Description | 
boolean | 
        Whether the xraiAttribution field is set.  |