public static final class XraiAttribution.Builder extends GeneratedMessageV3.Builder<XraiAttribution.Builder> implements XraiAttributionOrBuilder
   
   An explanation method that redistributes Integrated Gradients
 attributions to segmented regions, taking advantage of the model's fully
 differentiable structure. Refer to this paper for more details:
 https://arxiv.org/abs/1906.02825
 Supported only by image Models.
 Protobuf type google.cloud.aiplatform.v1beta1.XraiAttribution
 
  
  
  
    Inherited Members
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
      com.google.protobuf.GeneratedMessageV3.Builder.getUnknownFieldSetBuilder()
    
    
    
    
    
    
    
    
    
    
    
    
      com.google.protobuf.GeneratedMessageV3.Builder.mergeUnknownLengthDelimitedField(int,com.google.protobuf.ByteString)
    
    
      com.google.protobuf.GeneratedMessageV3.Builder.mergeUnknownVarintField(int,int)
    
    
    
    
    
      com.google.protobuf.GeneratedMessageV3.Builder.parseUnknownField(com.google.protobuf.CodedInputStream,com.google.protobuf.ExtensionRegistryLite,int)
    
    
    
    
      com.google.protobuf.GeneratedMessageV3.Builder.setUnknownFieldSetBuilder(com.google.protobuf.UnknownFieldSet.Builder)
    
    
    
    
    
    
    
    
    
    
    
    
   
  Static Methods
  
  
  
  
    public static final Descriptors.Descriptor getDescriptor()
   
  Returns
  
  Methods
  
  
  
  
    public XraiAttribution.Builder addRepeatedField(Descriptors.FieldDescriptor field, Object value)
   
  Parameters
  
  Returns
  
  Overrides
  
  
  
  
    public XraiAttribution build()
   
  Returns
  
  
  
  
    public XraiAttribution buildPartial()
   
  Returns
  
  
  
  
    public XraiAttribution.Builder clear()
   
  Returns
  
  Overrides
  
  
  
  
    public XraiAttribution.Builder clearBlurBaselineConfig()
   
   Config for XRAI with blur baseline.
 When enabled, a linear path from the maximally blurred image to the input
 image is created. Using a blurred baseline instead of zero (black image) is
 motivated by the BlurIG approach explained here:
 https://arxiv.org/abs/2004.03383
 .google.cloud.aiplatform.v1beta1.BlurBaselineConfig blur_baseline_config = 3;
 
  Returns
  
  
  
  
    public XraiAttribution.Builder clearField(Descriptors.FieldDescriptor field)
   
  Parameter
  
  Returns
  
  Overrides
  
  
  
  
    public XraiAttribution.Builder clearOneof(Descriptors.OneofDescriptor oneof)
   
  Parameter
  
  Returns
  
  Overrides
  
  
  
  
    public XraiAttribution.Builder clearSmoothGradConfig()
   
   Config for SmoothGrad approximation of gradients.
 When enabled, the gradients are approximated by averaging the gradients
 from noisy samples in the vicinity of the inputs. Adding
 noise can help improve the computed gradients. Refer to this paper for more
 details: https://arxiv.org/pdf/1706.03825.pdf
 .google.cloud.aiplatform.v1beta1.SmoothGradConfig smooth_grad_config = 2;
 
  Returns
  
  
  
  
    public XraiAttribution.Builder clearStepCount()
   
   Required. The number of steps for approximating the path integral.
 A good value to start is 50 and gradually increase until the
 sum to diff property is met within the desired error range.
 Valid range of its value is [1, 100], inclusively.
 int32 step_count = 1 [(.google.api.field_behavior) = REQUIRED];
 
  Returns
  
  
  
  
    public XraiAttribution.Builder clone()
   
  Returns
  
  Overrides
  
  
  
  
    public BlurBaselineConfig getBlurBaselineConfig()
   
   Config for XRAI with blur baseline.
 When enabled, a linear path from the maximally blurred image to the input
 image is created. Using a blurred baseline instead of zero (black image) is
 motivated by the BlurIG approach explained here:
 https://arxiv.org/abs/2004.03383
 .google.cloud.aiplatform.v1beta1.BlurBaselineConfig blur_baseline_config = 3;
 
  Returns
  
  
  
  
    public BlurBaselineConfig.Builder getBlurBaselineConfigBuilder()
   
   Config for XRAI with blur baseline.
 When enabled, a linear path from the maximally blurred image to the input
 image is created. Using a blurred baseline instead of zero (black image) is
 motivated by the BlurIG approach explained here:
 https://arxiv.org/abs/2004.03383
 .google.cloud.aiplatform.v1beta1.BlurBaselineConfig blur_baseline_config = 3;
 
  Returns
  
  
  
  
    public BlurBaselineConfigOrBuilder getBlurBaselineConfigOrBuilder()
   
   Config for XRAI with blur baseline.
 When enabled, a linear path from the maximally blurred image to the input
 image is created. Using a blurred baseline instead of zero (black image) is
 motivated by the BlurIG approach explained here:
 https://arxiv.org/abs/2004.03383
 .google.cloud.aiplatform.v1beta1.BlurBaselineConfig blur_baseline_config = 3;
 
  Returns
  
  
  
  
    public XraiAttribution getDefaultInstanceForType()
   
  Returns
  
  
  
  
    public Descriptors.Descriptor getDescriptorForType()
   
  Returns
  
  Overrides
  
  
  
  
    public SmoothGradConfig getSmoothGradConfig()
   
   Config for SmoothGrad approximation of gradients.
 When enabled, the gradients are approximated by averaging the gradients
 from noisy samples in the vicinity of the inputs. Adding
 noise can help improve the computed gradients. Refer to this paper for more
 details: https://arxiv.org/pdf/1706.03825.pdf
 .google.cloud.aiplatform.v1beta1.SmoothGradConfig smooth_grad_config = 2;
 
  Returns
  
  
  
  
    public SmoothGradConfig.Builder getSmoothGradConfigBuilder()
   
   Config for SmoothGrad approximation of gradients.
 When enabled, the gradients are approximated by averaging the gradients
 from noisy samples in the vicinity of the inputs. Adding
 noise can help improve the computed gradients. Refer to this paper for more
 details: https://arxiv.org/pdf/1706.03825.pdf
 .google.cloud.aiplatform.v1beta1.SmoothGradConfig smooth_grad_config = 2;
 
  Returns
  
  
  
  
    public SmoothGradConfigOrBuilder getSmoothGradConfigOrBuilder()
   
   Config for SmoothGrad approximation of gradients.
 When enabled, the gradients are approximated by averaging the gradients
 from noisy samples in the vicinity of the inputs. Adding
 noise can help improve the computed gradients. Refer to this paper for more
 details: https://arxiv.org/pdf/1706.03825.pdf
 .google.cloud.aiplatform.v1beta1.SmoothGradConfig smooth_grad_config = 2;
 
  Returns
  
  
  
  
    public int getStepCount()
   
   Required. The number of steps for approximating the path integral.
 A good value to start is 50 and gradually increase until the
 sum to diff property is met within the desired error range.
 Valid range of its value is [1, 100], inclusively.
 int32 step_count = 1 [(.google.api.field_behavior) = REQUIRED];
 
  Returns
  
    
      
        | Type | 
        Description | 
      
      
        | int | 
        The stepCount. 
 | 
      
    
  
  
  
  
    public boolean hasBlurBaselineConfig()
   
   Config for XRAI with blur baseline.
 When enabled, a linear path from the maximally blurred image to the input
 image is created. Using a blurred baseline instead of zero (black image) is
 motivated by the BlurIG approach explained here:
 https://arxiv.org/abs/2004.03383
 .google.cloud.aiplatform.v1beta1.BlurBaselineConfig blur_baseline_config = 3;
 
  Returns
  
    
      
        | Type | 
        Description | 
      
      
        | boolean | 
        Whether the blurBaselineConfig field is set. 
 | 
      
    
  
  
  
  
    public boolean hasSmoothGradConfig()
   
   Config for SmoothGrad approximation of gradients.
 When enabled, the gradients are approximated by averaging the gradients
 from noisy samples in the vicinity of the inputs. Adding
 noise can help improve the computed gradients. Refer to this paper for more
 details: https://arxiv.org/pdf/1706.03825.pdf
 .google.cloud.aiplatform.v1beta1.SmoothGradConfig smooth_grad_config = 2;
 
  Returns
  
    
      
        | Type | 
        Description | 
      
      
        | boolean | 
        Whether the smoothGradConfig field is set. 
 | 
      
    
  
  
  
  
    protected GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable()
   
  Returns
  
  Overrides
  
  
  
  
    public final boolean isInitialized()
   
  Returns
  
  Overrides
  
  
  
  
    public XraiAttribution.Builder mergeBlurBaselineConfig(BlurBaselineConfig value)
   
   Config for XRAI with blur baseline.
 When enabled, a linear path from the maximally blurred image to the input
 image is created. Using a blurred baseline instead of zero (black image) is
 motivated by the BlurIG approach explained here:
 https://arxiv.org/abs/2004.03383
 .google.cloud.aiplatform.v1beta1.BlurBaselineConfig blur_baseline_config = 3;
 
  Parameter
  
  Returns
  
  
  
  
    public XraiAttribution.Builder mergeFrom(XraiAttribution other)
   
  Parameter
  
  Returns
  
  
  
  
    public XraiAttribution.Builder mergeFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)
   
  Parameters
  
  Returns
  
  Overrides
  
  Exceptions
  
  
  
  
    public XraiAttribution.Builder mergeFrom(Message other)
   
  Parameter
  
  Returns
  
  Overrides
  
  
  
  
    public XraiAttribution.Builder mergeSmoothGradConfig(SmoothGradConfig value)
   
   Config for SmoothGrad approximation of gradients.
 When enabled, the gradients are approximated by averaging the gradients
 from noisy samples in the vicinity of the inputs. Adding
 noise can help improve the computed gradients. Refer to this paper for more
 details: https://arxiv.org/pdf/1706.03825.pdf
 .google.cloud.aiplatform.v1beta1.SmoothGradConfig smooth_grad_config = 2;
 
  Parameter
  
  Returns
  
  
  
  
    public final XraiAttribution.Builder mergeUnknownFields(UnknownFieldSet unknownFields)
   
  Parameter
  
  Returns
  
  Overrides
  
  
  
  
    public XraiAttribution.Builder setBlurBaselineConfig(BlurBaselineConfig value)
   
   Config for XRAI with blur baseline.
 When enabled, a linear path from the maximally blurred image to the input
 image is created. Using a blurred baseline instead of zero (black image) is
 motivated by the BlurIG approach explained here:
 https://arxiv.org/abs/2004.03383
 .google.cloud.aiplatform.v1beta1.BlurBaselineConfig blur_baseline_config = 3;
 
  Parameter
  
  Returns
  
  
  
  
    public XraiAttribution.Builder setBlurBaselineConfig(BlurBaselineConfig.Builder builderForValue)
   
   Config for XRAI with blur baseline.
 When enabled, a linear path from the maximally blurred image to the input
 image is created. Using a blurred baseline instead of zero (black image) is
 motivated by the BlurIG approach explained here:
 https://arxiv.org/abs/2004.03383
 .google.cloud.aiplatform.v1beta1.BlurBaselineConfig blur_baseline_config = 3;
 
  Parameter
  
  Returns
  
  
  
  
    public XraiAttribution.Builder setField(Descriptors.FieldDescriptor field, Object value)
   
  Parameters
  
  Returns
  
  Overrides
  
  
  
  
    public XraiAttribution.Builder setRepeatedField(Descriptors.FieldDescriptor field, int index, Object value)
   
  Parameters
  
  Returns
  
  Overrides
  
  
  
  
    public XraiAttribution.Builder setSmoothGradConfig(SmoothGradConfig value)
   
   Config for SmoothGrad approximation of gradients.
 When enabled, the gradients are approximated by averaging the gradients
 from noisy samples in the vicinity of the inputs. Adding
 noise can help improve the computed gradients. Refer to this paper for more
 details: https://arxiv.org/pdf/1706.03825.pdf
 .google.cloud.aiplatform.v1beta1.SmoothGradConfig smooth_grad_config = 2;
 
  Parameter
  
  Returns
  
  
  
  
    public XraiAttribution.Builder setSmoothGradConfig(SmoothGradConfig.Builder builderForValue)
   
   Config for SmoothGrad approximation of gradients.
 When enabled, the gradients are approximated by averaging the gradients
 from noisy samples in the vicinity of the inputs. Adding
 noise can help improve the computed gradients. Refer to this paper for more
 details: https://arxiv.org/pdf/1706.03825.pdf
 .google.cloud.aiplatform.v1beta1.SmoothGradConfig smooth_grad_config = 2;
 
  Parameter
  
  Returns
  
  
  
  
    public XraiAttribution.Builder setStepCount(int value)
   
   Required. The number of steps for approximating the path integral.
 A good value to start is 50 and gradually increase until the
 sum to diff property is met within the desired error range.
 Valid range of its value is [1, 100], inclusively.
 int32 step_count = 1 [(.google.api.field_behavior) = REQUIRED];
 
  Parameter
  
    
      
        | Name | 
        Description | 
      
      
        | value | 
        int
 The stepCount to set. 
 | 
      
    
  
  Returns
  
  
  
  
    public final XraiAttribution.Builder setUnknownFields(UnknownFieldSet unknownFields)
   
  Parameter
  
  Returns
  
  Overrides