- 3.79.0 (latest)
- 3.77.0
- 3.76.0
- 3.75.0
- 3.74.0
- 3.73.0
- 3.71.0
- 3.69.0
- 3.68.0
- 3.65.0
- 3.64.0
- 3.63.0
- 3.61.0
- 3.60.0
- 3.59.0
- 3.58.0
- 3.57.0
- 3.56.0
- 3.55.0
- 3.54.0
- 3.53.0
- 3.52.0
- 3.50.0
- 3.49.0
- 3.48.0
- 3.47.0
- 3.46.0
- 3.45.0
- 3.44.0
- 3.43.0
- 3.42.0
- 3.41.0
- 3.40.0
- 3.38.0
- 3.37.0
- 3.36.0
- 3.35.0
- 3.34.0
- 3.33.0
- 3.32.0
- 3.31.0
- 3.30.0
- 3.29.0
- 3.28.0
- 3.25.0
- 3.24.0
- 3.23.0
- 3.22.0
- 3.21.0
- 3.20.0
- 3.19.0
- 3.18.0
- 3.17.0
- 3.16.0
- 3.15.0
- 3.14.0
- 3.13.0
- 3.12.0
- 3.11.0
- 3.10.0
- 3.9.0
- 3.8.0
- 3.7.0
- 3.6.0
- 3.5.0
- 3.4.2
- 3.3.0
- 3.2.0
- 3.0.0
- 2.9.8
- 2.8.9
- 2.7.4
- 2.5.3
- 2.4.0
public static final class ModelEvaluation.BiasConfig.Builder extends GeneratedMessageV3.Builder<ModelEvaluation.BiasConfig.Builder> implements ModelEvaluation.BiasConfigOrBuilderConfiguration for bias detection.
 Protobuf type google.cloud.aiplatform.v1beta1.ModelEvaluation.BiasConfig
Inheritance
Object > AbstractMessageLite.Builder<MessageType,BuilderType> > AbstractMessage.Builder<BuilderType> > GeneratedMessageV3.Builder > ModelEvaluation.BiasConfig.BuilderImplements
ModelEvaluation.BiasConfigOrBuilderStatic Methods
getDescriptor()
public static final Descriptors.Descriptor getDescriptor()| Returns | |
|---|---|
| Type | Description | 
| Descriptor | |
Methods
addAllLabels(Iterable<String> values)
public ModelEvaluation.BiasConfig.Builder addAllLabels(Iterable<String> values)Positive labels selection on the target field.
 repeated string labels = 2;
| Parameter | |
|---|---|
| Name | Description | 
| values | Iterable<String>The labels to add. | 
| Returns | |
|---|---|
| Type | Description | 
| ModelEvaluation.BiasConfig.Builder | This builder for chaining. | 
addLabels(String value)
public ModelEvaluation.BiasConfig.Builder addLabels(String value)Positive labels selection on the target field.
 repeated string labels = 2;
| Parameter | |
|---|---|
| Name | Description | 
| value | StringThe labels to add. | 
| Returns | |
|---|---|
| Type | Description | 
| ModelEvaluation.BiasConfig.Builder | This builder for chaining. | 
addLabelsBytes(ByteString value)
public ModelEvaluation.BiasConfig.Builder addLabelsBytes(ByteString value)Positive labels selection on the target field.
 repeated string labels = 2;
| Parameter | |
|---|---|
| Name | Description | 
| value | ByteStringThe bytes of the labels to add. | 
| Returns | |
|---|---|
| Type | Description | 
| ModelEvaluation.BiasConfig.Builder | This builder for chaining. | 
addRepeatedField(Descriptors.FieldDescriptor field, Object value)
public ModelEvaluation.BiasConfig.Builder addRepeatedField(Descriptors.FieldDescriptor field, Object value)| Parameters | |
|---|---|
| Name | Description | 
| field | FieldDescriptor | 
| value | Object | 
| Returns | |
|---|---|
| Type | Description | 
| ModelEvaluation.BiasConfig.Builder | |
build()
public ModelEvaluation.BiasConfig build()| Returns | |
|---|---|
| Type | Description | 
| ModelEvaluation.BiasConfig | |
buildPartial()
public ModelEvaluation.BiasConfig buildPartial()| Returns | |
|---|---|
| Type | Description | 
| ModelEvaluation.BiasConfig | |
clear()
public ModelEvaluation.BiasConfig.Builder clear()| Returns | |
|---|---|
| Type | Description | 
| ModelEvaluation.BiasConfig.Builder | |
clearBiasSlices()
public ModelEvaluation.BiasConfig.Builder clearBiasSlices()Specification for how the data should be sliced for bias. It contains a list of slices, with limitation of two slices. The first slice of data will be the slice_a. The second slice in the list (slice_b) will be compared against the first slice. If only a single slice is provided, then slice_a will be compared against "not slice_a". Below are examples with feature "education" with value "low", "medium", "high" in the dataset:
Example 1:
 bias_slices = [{'education': 'low'}]
A single slice provided. In this case, slice_a is the collection of data with 'education' equals 'low', and slice_b is the collection of data with 'education' equals 'medium' or 'high'.
Example 2:
 bias_slices = [{'education': 'low'},
                {'education': 'high'}]
Two slices provided. In this case, slice_a is the collection of data with 'education' equals 'low', and slice_b is the collection of data with 'education' equals 'high'.
 
 .google.cloud.aiplatform.v1beta1.ModelEvaluationSlice.Slice.SliceSpec bias_slices = 1;
 
| Returns | |
|---|---|
| Type | Description | 
| ModelEvaluation.BiasConfig.Builder | |
clearField(Descriptors.FieldDescriptor field)
public ModelEvaluation.BiasConfig.Builder clearField(Descriptors.FieldDescriptor field)| Parameter | |
|---|---|
| Name | Description | 
| field | FieldDescriptor | 
| Returns | |
|---|---|
| Type | Description | 
| ModelEvaluation.BiasConfig.Builder | |
clearLabels()
public ModelEvaluation.BiasConfig.Builder clearLabels()Positive labels selection on the target field.
 repeated string labels = 2;
| Returns | |
|---|---|
| Type | Description | 
| ModelEvaluation.BiasConfig.Builder | This builder for chaining. | 
clearOneof(Descriptors.OneofDescriptor oneof)
public ModelEvaluation.BiasConfig.Builder clearOneof(Descriptors.OneofDescriptor oneof)| Parameter | |
|---|---|
| Name | Description | 
| oneof | OneofDescriptor | 
| Returns | |
|---|---|
| Type | Description | 
| ModelEvaluation.BiasConfig.Builder | |
clone()
public ModelEvaluation.BiasConfig.Builder clone()| Returns | |
|---|---|
| Type | Description | 
| ModelEvaluation.BiasConfig.Builder | |
getBiasSlices()
public ModelEvaluationSlice.Slice.SliceSpec getBiasSlices()Specification for how the data should be sliced for bias. It contains a list of slices, with limitation of two slices. The first slice of data will be the slice_a. The second slice in the list (slice_b) will be compared against the first slice. If only a single slice is provided, then slice_a will be compared against "not slice_a". Below are examples with feature "education" with value "low", "medium", "high" in the dataset:
Example 1:
 bias_slices = [{'education': 'low'}]
A single slice provided. In this case, slice_a is the collection of data with 'education' equals 'low', and slice_b is the collection of data with 'education' equals 'medium' or 'high'.
Example 2:
 bias_slices = [{'education': 'low'},
                {'education': 'high'}]
Two slices provided. In this case, slice_a is the collection of data with 'education' equals 'low', and slice_b is the collection of data with 'education' equals 'high'.
 
 .google.cloud.aiplatform.v1beta1.ModelEvaluationSlice.Slice.SliceSpec bias_slices = 1;
 
| Returns | |
|---|---|
| Type | Description | 
| ModelEvaluationSlice.Slice.SliceSpec | The biasSlices. | 
getBiasSlicesBuilder()
public ModelEvaluationSlice.Slice.SliceSpec.Builder getBiasSlicesBuilder()Specification for how the data should be sliced for bias. It contains a list of slices, with limitation of two slices. The first slice of data will be the slice_a. The second slice in the list (slice_b) will be compared against the first slice. If only a single slice is provided, then slice_a will be compared against "not slice_a". Below are examples with feature "education" with value "low", "medium", "high" in the dataset:
Example 1:
 bias_slices = [{'education': 'low'}]
A single slice provided. In this case, slice_a is the collection of data with 'education' equals 'low', and slice_b is the collection of data with 'education' equals 'medium' or 'high'.
Example 2:
 bias_slices = [{'education': 'low'},
                {'education': 'high'}]
Two slices provided. In this case, slice_a is the collection of data with 'education' equals 'low', and slice_b is the collection of data with 'education' equals 'high'.
 
 .google.cloud.aiplatform.v1beta1.ModelEvaluationSlice.Slice.SliceSpec bias_slices = 1;
 
| Returns | |
|---|---|
| Type | Description | 
| ModelEvaluationSlice.Slice.SliceSpec.Builder | |
getBiasSlicesOrBuilder()
public ModelEvaluationSlice.Slice.SliceSpecOrBuilder getBiasSlicesOrBuilder()Specification for how the data should be sliced for bias. It contains a list of slices, with limitation of two slices. The first slice of data will be the slice_a. The second slice in the list (slice_b) will be compared against the first slice. If only a single slice is provided, then slice_a will be compared against "not slice_a". Below are examples with feature "education" with value "low", "medium", "high" in the dataset:
Example 1:
 bias_slices = [{'education': 'low'}]
A single slice provided. In this case, slice_a is the collection of data with 'education' equals 'low', and slice_b is the collection of data with 'education' equals 'medium' or 'high'.
Example 2:
 bias_slices = [{'education': 'low'},
                {'education': 'high'}]
Two slices provided. In this case, slice_a is the collection of data with 'education' equals 'low', and slice_b is the collection of data with 'education' equals 'high'.
 
 .google.cloud.aiplatform.v1beta1.ModelEvaluationSlice.Slice.SliceSpec bias_slices = 1;
 
| Returns | |
|---|---|
| Type | Description | 
| ModelEvaluationSlice.Slice.SliceSpecOrBuilder | |
getDefaultInstanceForType()
public ModelEvaluation.BiasConfig getDefaultInstanceForType()| Returns | |
|---|---|
| Type | Description | 
| ModelEvaluation.BiasConfig | |
getDescriptorForType()
public Descriptors.Descriptor getDescriptorForType()| Returns | |
|---|---|
| Type | Description | 
| Descriptor | |
getLabels(int index)
public String getLabels(int index)Positive labels selection on the target field.
 repeated string labels = 2;
| Parameter | |
|---|---|
| Name | Description | 
| index | intThe index of the element to return. | 
| Returns | |
|---|---|
| Type | Description | 
| String | The labels at the given index. | 
getLabelsBytes(int index)
public ByteString getLabelsBytes(int index)Positive labels selection on the target field.
 repeated string labels = 2;
| Parameter | |
|---|---|
| Name | Description | 
| index | intThe index of the value to return. | 
| Returns | |
|---|---|
| Type | Description | 
| ByteString | The bytes of the labels at the given index. | 
getLabelsCount()
public int getLabelsCount()Positive labels selection on the target field.
 repeated string labels = 2;
| Returns | |
|---|---|
| Type | Description | 
| int | The count of labels. | 
getLabelsList()
public ProtocolStringList getLabelsList()Positive labels selection on the target field.
 repeated string labels = 2;
| Returns | |
|---|---|
| Type | Description | 
| ProtocolStringList | A list containing the labels. | 
hasBiasSlices()
public boolean hasBiasSlices()Specification for how the data should be sliced for bias. It contains a list of slices, with limitation of two slices. The first slice of data will be the slice_a. The second slice in the list (slice_b) will be compared against the first slice. If only a single slice is provided, then slice_a will be compared against "not slice_a". Below are examples with feature "education" with value "low", "medium", "high" in the dataset:
Example 1:
 bias_slices = [{'education': 'low'}]
A single slice provided. In this case, slice_a is the collection of data with 'education' equals 'low', and slice_b is the collection of data with 'education' equals 'medium' or 'high'.
Example 2:
 bias_slices = [{'education': 'low'},
                {'education': 'high'}]
Two slices provided. In this case, slice_a is the collection of data with 'education' equals 'low', and slice_b is the collection of data with 'education' equals 'high'.
 
 .google.cloud.aiplatform.v1beta1.ModelEvaluationSlice.Slice.SliceSpec bias_slices = 1;
 
| Returns | |
|---|---|
| Type | Description | 
| boolean | Whether the biasSlices field is set. | 
internalGetFieldAccessorTable()
protected GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable()| Returns | |
|---|---|
| Type | Description | 
| FieldAccessorTable | |
isInitialized()
public final boolean isInitialized()| Returns | |
|---|---|
| Type | Description | 
| boolean | |
mergeBiasSlices(ModelEvaluationSlice.Slice.SliceSpec value)
public ModelEvaluation.BiasConfig.Builder mergeBiasSlices(ModelEvaluationSlice.Slice.SliceSpec value)Specification for how the data should be sliced for bias. It contains a list of slices, with limitation of two slices. The first slice of data will be the slice_a. The second slice in the list (slice_b) will be compared against the first slice. If only a single slice is provided, then slice_a will be compared against "not slice_a". Below are examples with feature "education" with value "low", "medium", "high" in the dataset:
Example 1:
 bias_slices = [{'education': 'low'}]
A single slice provided. In this case, slice_a is the collection of data with 'education' equals 'low', and slice_b is the collection of data with 'education' equals 'medium' or 'high'.
Example 2:
 bias_slices = [{'education': 'low'},
                {'education': 'high'}]
Two slices provided. In this case, slice_a is the collection of data with 'education' equals 'low', and slice_b is the collection of data with 'education' equals 'high'.
 
 .google.cloud.aiplatform.v1beta1.ModelEvaluationSlice.Slice.SliceSpec bias_slices = 1;
 
| Parameter | |
|---|---|
| Name | Description | 
| value | ModelEvaluationSlice.Slice.SliceSpec | 
| Returns | |
|---|---|
| Type | Description | 
| ModelEvaluation.BiasConfig.Builder | |
mergeFrom(ModelEvaluation.BiasConfig other)
public ModelEvaluation.BiasConfig.Builder mergeFrom(ModelEvaluation.BiasConfig other)| Parameter | |
|---|---|
| Name | Description | 
| other | ModelEvaluation.BiasConfig | 
| Returns | |
|---|---|
| Type | Description | 
| ModelEvaluation.BiasConfig.Builder | |
mergeFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)
public ModelEvaluation.BiasConfig.Builder mergeFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)| Parameters | |
|---|---|
| Name | Description | 
| input | CodedInputStream | 
| extensionRegistry | ExtensionRegistryLite | 
| Returns | |
|---|---|
| Type | Description | 
| ModelEvaluation.BiasConfig.Builder | |
| Exceptions | |
|---|---|
| Type | Description | 
| IOException | |
mergeFrom(Message other)
public ModelEvaluation.BiasConfig.Builder mergeFrom(Message other)| Parameter | |
|---|---|
| Name | Description | 
| other | Message | 
| Returns | |
|---|---|
| Type | Description | 
| ModelEvaluation.BiasConfig.Builder | |
mergeUnknownFields(UnknownFieldSet unknownFields)
public final ModelEvaluation.BiasConfig.Builder mergeUnknownFields(UnknownFieldSet unknownFields)| Parameter | |
|---|---|
| Name | Description | 
| unknownFields | UnknownFieldSet | 
| Returns | |
|---|---|
| Type | Description | 
| ModelEvaluation.BiasConfig.Builder | |
setBiasSlices(ModelEvaluationSlice.Slice.SliceSpec value)
public ModelEvaluation.BiasConfig.Builder setBiasSlices(ModelEvaluationSlice.Slice.SliceSpec value)Specification for how the data should be sliced for bias. It contains a list of slices, with limitation of two slices. The first slice of data will be the slice_a. The second slice in the list (slice_b) will be compared against the first slice. If only a single slice is provided, then slice_a will be compared against "not slice_a". Below are examples with feature "education" with value "low", "medium", "high" in the dataset:
Example 1:
 bias_slices = [{'education': 'low'}]
A single slice provided. In this case, slice_a is the collection of data with 'education' equals 'low', and slice_b is the collection of data with 'education' equals 'medium' or 'high'.
Example 2:
 bias_slices = [{'education': 'low'},
                {'education': 'high'}]
Two slices provided. In this case, slice_a is the collection of data with 'education' equals 'low', and slice_b is the collection of data with 'education' equals 'high'.
 
 .google.cloud.aiplatform.v1beta1.ModelEvaluationSlice.Slice.SliceSpec bias_slices = 1;
 
| Parameter | |
|---|---|
| Name | Description | 
| value | ModelEvaluationSlice.Slice.SliceSpec | 
| Returns | |
|---|---|
| Type | Description | 
| ModelEvaluation.BiasConfig.Builder | |
setBiasSlices(ModelEvaluationSlice.Slice.SliceSpec.Builder builderForValue)
public ModelEvaluation.BiasConfig.Builder setBiasSlices(ModelEvaluationSlice.Slice.SliceSpec.Builder builderForValue)Specification for how the data should be sliced for bias. It contains a list of slices, with limitation of two slices. The first slice of data will be the slice_a. The second slice in the list (slice_b) will be compared against the first slice. If only a single slice is provided, then slice_a will be compared against "not slice_a". Below are examples with feature "education" with value "low", "medium", "high" in the dataset:
Example 1:
 bias_slices = [{'education': 'low'}]
A single slice provided. In this case, slice_a is the collection of data with 'education' equals 'low', and slice_b is the collection of data with 'education' equals 'medium' or 'high'.
Example 2:
 bias_slices = [{'education': 'low'},
                {'education': 'high'}]
Two slices provided. In this case, slice_a is the collection of data with 'education' equals 'low', and slice_b is the collection of data with 'education' equals 'high'.
 
 .google.cloud.aiplatform.v1beta1.ModelEvaluationSlice.Slice.SliceSpec bias_slices = 1;
 
| Parameter | |
|---|---|
| Name | Description | 
| builderForValue | ModelEvaluationSlice.Slice.SliceSpec.Builder | 
| Returns | |
|---|---|
| Type | Description | 
| ModelEvaluation.BiasConfig.Builder | |
setField(Descriptors.FieldDescriptor field, Object value)
public ModelEvaluation.BiasConfig.Builder setField(Descriptors.FieldDescriptor field, Object value)| Parameters | |
|---|---|
| Name | Description | 
| field | FieldDescriptor | 
| value | Object | 
| Returns | |
|---|---|
| Type | Description | 
| ModelEvaluation.BiasConfig.Builder | |
setLabels(int index, String value)
public ModelEvaluation.BiasConfig.Builder setLabels(int index, String value)Positive labels selection on the target field.
 repeated string labels = 2;
| Parameters | |
|---|---|
| Name | Description | 
| index | intThe index to set the value at. | 
| value | StringThe labels to set. | 
| Returns | |
|---|---|
| Type | Description | 
| ModelEvaluation.BiasConfig.Builder | This builder for chaining. | 
setRepeatedField(Descriptors.FieldDescriptor field, int index, Object value)
public ModelEvaluation.BiasConfig.Builder setRepeatedField(Descriptors.FieldDescriptor field, int index, Object value)| Parameters | |
|---|---|
| Name | Description | 
| field | FieldDescriptor | 
| index | int | 
| value | Object | 
| Returns | |
|---|---|
| Type | Description | 
| ModelEvaluation.BiasConfig.Builder | |
setUnknownFields(UnknownFieldSet unknownFields)
public final ModelEvaluation.BiasConfig.Builder setUnknownFields(UnknownFieldSet unknownFields)| Parameter | |
|---|---|
| Name | Description | 
| unknownFields | UnknownFieldSet | 
| Returns | |
|---|---|
| Type | Description | 
| ModelEvaluation.BiasConfig.Builder | |