- 3.79.0 (latest)
 - 3.77.0
 - 3.76.0
 - 3.75.0
 - 3.74.0
 - 3.73.0
 - 3.71.0
 - 3.69.0
 - 3.68.0
 - 3.65.0
 - 3.64.0
 - 3.63.0
 - 3.61.0
 - 3.60.0
 - 3.59.0
 - 3.58.0
 - 3.57.0
 - 3.56.0
 - 3.55.0
 - 3.54.0
 - 3.53.0
 - 3.52.0
 - 3.50.0
 - 3.49.0
 - 3.48.0
 - 3.47.0
 - 3.46.0
 - 3.45.0
 - 3.44.0
 - 3.43.0
 - 3.42.0
 - 3.41.0
 - 3.40.0
 - 3.38.0
 - 3.37.0
 - 3.36.0
 - 3.35.0
 - 3.34.0
 - 3.33.0
 - 3.32.0
 - 3.31.0
 - 3.30.0
 - 3.29.0
 - 3.28.0
 - 3.25.0
 - 3.24.0
 - 3.23.0
 - 3.22.0
 - 3.21.0
 - 3.20.0
 - 3.19.0
 - 3.18.0
 - 3.17.0
 - 3.16.0
 - 3.15.0
 - 3.14.0
 - 3.13.0
 - 3.12.0
 - 3.11.0
 - 3.10.0
 - 3.9.0
 - 3.8.0
 - 3.7.0
 - 3.6.0
 - 3.5.0
 - 3.4.2
 - 3.3.0
 - 3.2.0
 - 3.0.0
 - 2.9.8
 - 2.8.9
 - 2.7.4
 - 2.5.3
 - 2.4.0
 
public static interface ModelEvaluation.BiasConfigOrBuilder extends MessageOrBuilderImplements
MessageOrBuilderMethods
getBiasSlices()
public abstract ModelEvaluationSlice.Slice.SliceSpec getBiasSlices()Specification for how the data should be sliced for bias. It contains a list of slices, with limitation of two slices. The first slice of data will be the slice_a. The second slice in the list (slice_b) will be compared against the first slice. If only a single slice is provided, then slice_a will be compared against "not slice_a". Below are examples with feature "education" with value "low", "medium", "high" in the dataset:
Example 1:
 bias_slices = [{'education': 'low'}]
A single slice provided. In this case, slice_a is the collection of data with 'education' equals 'low', and slice_b is the collection of data with 'education' equals 'medium' or 'high'.
Example 2:
 bias_slices = [{'education': 'low'},
                {'education': 'high'}]
Two slices provided. In this case, slice_a is the collection of data with 'education' equals 'low', and slice_b is the collection of data with 'education' equals 'high'.
 .google.cloud.aiplatform.v1beta1.ModelEvaluationSlice.Slice.SliceSpec bias_slices = 1;
 
| Returns | |
|---|---|
| Type | Description | 
ModelEvaluationSlice.Slice.SliceSpec | 
        The biasSlices.  | 
      
getBiasSlicesOrBuilder()
public abstract ModelEvaluationSlice.Slice.SliceSpecOrBuilder getBiasSlicesOrBuilder()Specification for how the data should be sliced for bias. It contains a list of slices, with limitation of two slices. The first slice of data will be the slice_a. The second slice in the list (slice_b) will be compared against the first slice. If only a single slice is provided, then slice_a will be compared against "not slice_a". Below are examples with feature "education" with value "low", "medium", "high" in the dataset:
Example 1:
 bias_slices = [{'education': 'low'}]
A single slice provided. In this case, slice_a is the collection of data with 'education' equals 'low', and slice_b is the collection of data with 'education' equals 'medium' or 'high'.
Example 2:
 bias_slices = [{'education': 'low'},
                {'education': 'high'}]
Two slices provided. In this case, slice_a is the collection of data with 'education' equals 'low', and slice_b is the collection of data with 'education' equals 'high'.
 .google.cloud.aiplatform.v1beta1.ModelEvaluationSlice.Slice.SliceSpec bias_slices = 1;
 
| Returns | |
|---|---|
| Type | Description | 
ModelEvaluationSlice.Slice.SliceSpecOrBuilder | 
        |
getLabels(int index)
public abstract String getLabels(int index)Positive labels selection on the target field.
 repeated string labels = 2;
| Parameter | |
|---|---|
| Name | Description | 
index | 
        intThe index of the element to return.  | 
      
| Returns | |
|---|---|
| Type | Description | 
String | 
        The labels at the given index.  | 
      
getLabelsBytes(int index)
public abstract ByteString getLabelsBytes(int index)Positive labels selection on the target field.
 repeated string labels = 2;
| Parameter | |
|---|---|
| Name | Description | 
index | 
        intThe index of the value to return.  | 
      
| Returns | |
|---|---|
| Type | Description | 
ByteString | 
        The bytes of the labels at the given index.  | 
      
getLabelsCount()
public abstract int getLabelsCount()Positive labels selection on the target field.
 repeated string labels = 2;
| Returns | |
|---|---|
| Type | Description | 
int | 
        The count of labels.  | 
      
getLabelsList()
public abstract List<String> getLabelsList()Positive labels selection on the target field.
 repeated string labels = 2;
| Returns | |
|---|---|
| Type | Description | 
List<String> | 
        A list containing the labels.  | 
      
hasBiasSlices()
public abstract boolean hasBiasSlices()Specification for how the data should be sliced for bias. It contains a list of slices, with limitation of two slices. The first slice of data will be the slice_a. The second slice in the list (slice_b) will be compared against the first slice. If only a single slice is provided, then slice_a will be compared against "not slice_a". Below are examples with feature "education" with value "low", "medium", "high" in the dataset:
Example 1:
 bias_slices = [{'education': 'low'}]
A single slice provided. In this case, slice_a is the collection of data with 'education' equals 'low', and slice_b is the collection of data with 'education' equals 'medium' or 'high'.
Example 2:
 bias_slices = [{'education': 'low'},
                {'education': 'high'}]
Two slices provided. In this case, slice_a is the collection of data with 'education' equals 'low', and slice_b is the collection of data with 'education' equals 'high'.
 .google.cloud.aiplatform.v1beta1.ModelEvaluationSlice.Slice.SliceSpec bias_slices = 1;
 
| Returns | |
|---|---|
| Type | Description | 
boolean | 
        Whether the biasSlices field is set.  |