public final class ModelMonitor extends GeneratedMessageV3 implements ModelMonitorOrBuilder
   
   Vertex AI Model Monitoring Service serves as a central hub for the analysis
 and visualization of data quality and performance related to models.
 ModelMonitor stands as a top level resource for overseeing your model
 monitoring tasks.
 Protobuf type google.cloud.aiplatform.v1beta1.ModelMonitor
    Inherited Members
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
      com.google.protobuf.GeneratedMessageV3.<ListT>makeMutableCopy(ListT)
    
    
      com.google.protobuf.GeneratedMessageV3.<ListT>makeMutableCopy(ListT,int)
    
    
    
    
    
    
    
    
      com.google.protobuf.GeneratedMessageV3.<T>emptyList(java.lang.Class<T>)
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
      com.google.protobuf.GeneratedMessageV3.internalGetMapFieldReflection(int)
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
   
  Static Fields
  
  
  
    public static final int CREATE_TIME_FIELD_NUMBER
   
  
    
      
        | Field Value | 
      
        | Type | Description | 
      
        | int |  | 
    
  
  
  
    public static final int DISPLAY_NAME_FIELD_NUMBER
   
  
    
      
        | Field Value | 
      
        | Type | Description | 
      
        | int |  | 
    
  
  
  
    public static final int ENCRYPTION_SPEC_FIELD_NUMBER
   
  
    
      
        | Field Value | 
      
        | Type | Description | 
      
        | int |  | 
    
  
  
  
    public static final int EXPLANATION_SPEC_FIELD_NUMBER
   
  
    
      
        | Field Value | 
      
        | Type | Description | 
      
        | int |  | 
    
  
  
  
    public static final int MODEL_MONITORING_SCHEMA_FIELD_NUMBER
   
  
    
      
        | Field Value | 
      
        | Type | Description | 
      
        | int |  | 
    
  
  
  
    public static final int MODEL_MONITORING_TARGET_FIELD_NUMBER
   
  
    
      
        | Field Value | 
      
        | Type | Description | 
      
        | int |  | 
    
  
  
  
    public static final int NAME_FIELD_NUMBER
   
  
    
      
        | Field Value | 
      
        | Type | Description | 
      
        | int |  | 
    
  
  
  
    public static final int NOTIFICATION_SPEC_FIELD_NUMBER
   
  
    
      
        | Field Value | 
      
        | Type | Description | 
      
        | int |  | 
    
  
  
  
    public static final int OUTPUT_SPEC_FIELD_NUMBER
   
  
    
      
        | Field Value | 
      
        | Type | Description | 
      
        | int |  | 
    
  
  
  
    public static final int SATISFIES_PZI_FIELD_NUMBER
   
  
    
      
        | Field Value | 
      
        | Type | Description | 
      
        | int |  | 
    
  
  
  
    public static final int SATISFIES_PZS_FIELD_NUMBER
   
  
    
      
        | Field Value | 
      
        | Type | Description | 
      
        | int |  | 
    
  
  
  
    public static final int TABULAR_OBJECTIVE_FIELD_NUMBER
   
  
    
      
        | Field Value | 
      
        | Type | Description | 
      
        | int |  | 
    
  
  
  
    public static final int TRAINING_DATASET_FIELD_NUMBER
   
  
    
      
        | Field Value | 
      
        | Type | Description | 
      
        | int |  | 
    
  
  
  
    public static final int UPDATE_TIME_FIELD_NUMBER
   
  
    
      
        | Field Value | 
      
        | Type | Description | 
      
        | int |  | 
    
  
  Static Methods
  
  
  
  
    public static ModelMonitor getDefaultInstance()
   
  
  
  
  
    public static final Descriptors.Descriptor getDescriptor()
   
  
  
  
  
    public static ModelMonitor.Builder newBuilder()
   
  
  
  
  
    public static ModelMonitor.Builder newBuilder(ModelMonitor prototype)
   
  
  
  
  
  
    public static ModelMonitor parseDelimitedFrom(InputStream input)
   
  
  
  
  
  
  
    public static ModelMonitor parseDelimitedFrom(InputStream input, ExtensionRegistryLite extensionRegistry)
   
  
  
  
  
  
  
    public static ModelMonitor parseFrom(byte[] data)
   
  
    
      
        | Parameter | 
      
        | Name | Description | 
      
        | data | byte[]
 | 
    
  
  
  
  
  
  
    public static ModelMonitor parseFrom(byte[] data, ExtensionRegistryLite extensionRegistry)
   
  
  
  
  
  
  
    public static ModelMonitor parseFrom(ByteString data)
   
  
  
  
  
  
  
    public static ModelMonitor parseFrom(ByteString data, ExtensionRegistryLite extensionRegistry)
   
  
  
  
  
  
  
    public static ModelMonitor parseFrom(CodedInputStream input)
   
  
  
  
  
  
  
    public static ModelMonitor parseFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)
   
  
  
  
  
  
  
    public static ModelMonitor parseFrom(InputStream input)
   
  
  
  
  
  
  
    public static ModelMonitor parseFrom(InputStream input, ExtensionRegistryLite extensionRegistry)
   
  
  
  
  
  
  
    public static ModelMonitor parseFrom(ByteBuffer data)
   
  
  
  
  
  
  
    public static ModelMonitor parseFrom(ByteBuffer data, ExtensionRegistryLite extensionRegistry)
   
  
  
  
  
  
  
    public static Parser<ModelMonitor> parser()
   
  
  Methods
  
  
  
  
    public boolean equals(Object obj)
   
  
    
      
        | Parameter | 
      
        | Name | Description | 
      
        | obj | Object
 | 
    
  
  
  Overrides
  
  
  
  
    public Timestamp getCreateTime()
   
   Output only. Timestamp when this ModelMonitor was created.
 .google.protobuf.Timestamp create_time = 6 [(.google.api.field_behavior) = OUTPUT_ONLY];
 
    
      
        | Returns | 
      
        | Type | Description | 
      
        | Timestamp | The createTime. | 
    
  
  
  
  
    public TimestampOrBuilder getCreateTimeOrBuilder()
   
   Output only. Timestamp when this ModelMonitor was created.
 .google.protobuf.Timestamp create_time = 6 [(.google.api.field_behavior) = OUTPUT_ONLY];
 
    public ModelMonitor getDefaultInstanceForType()
   
  
  
  
  
    public ModelMonitor.DefaultObjectiveCase getDefaultObjectiveCase()
   
  
  
  
  
    public String getDisplayName()
   
   The display name of the ModelMonitor.
 The name can be up to 128 characters long and can consist of any UTF-8.
 string display_name = 2;
    
      
        | Returns | 
      
        | Type | Description | 
      
        | String | The displayName. | 
    
  
  
  
  
    public ByteString getDisplayNameBytes()
   
   The display name of the ModelMonitor.
 The name can be up to 128 characters long and can consist of any UTF-8.
 string display_name = 2;
    
      
        | Returns | 
      
        | Type | Description | 
      
        | ByteString | The bytes for displayName. | 
    
  
  
  
  
    public EncryptionSpec getEncryptionSpec()
   
   Customer-managed encryption key spec for a ModelMonitor. If
 set, this ModelMonitor and all sub-resources of this
 ModelMonitor will be secured by this key.
 .google.cloud.aiplatform.v1beta1.EncryptionSpec encryption_spec = 5;
    public EncryptionSpecOrBuilder getEncryptionSpecOrBuilder()
   
   Customer-managed encryption key spec for a ModelMonitor. If
 set, this ModelMonitor and all sub-resources of this
 ModelMonitor will be secured by this key.
 .google.cloud.aiplatform.v1beta1.EncryptionSpec encryption_spec = 5;
    public ExplanationSpec getExplanationSpec()
   
   Optional model explanation spec. It is used for feature attribution
 monitoring.
 .google.cloud.aiplatform.v1beta1.ExplanationSpec explanation_spec = 16;
    public ExplanationSpecOrBuilder getExplanationSpecOrBuilder()
   
   Optional model explanation spec. It is used for feature attribution
 monitoring.
 .google.cloud.aiplatform.v1beta1.ExplanationSpec explanation_spec = 16;
    public ModelMonitoringSchema getModelMonitoringSchema()
   
   Monitoring Schema is to specify the model's features, prediction outputs
 and ground truth properties. It is used to extract pertinent data from the
 dataset and to process features based on their properties.
 Make sure that the schema aligns with your dataset, if it does not, we will
 be unable to extract data from the dataset.
 It is required for most models, but optional for Vertex AI AutoML Tables
 unless the schem information is not available.
 .google.cloud.aiplatform.v1beta1.ModelMonitoringSchema model_monitoring_schema = 9;
 
    public ModelMonitoringSchemaOrBuilder getModelMonitoringSchemaOrBuilder()
   
   Monitoring Schema is to specify the model's features, prediction outputs
 and ground truth properties. It is used to extract pertinent data from the
 dataset and to process features based on their properties.
 Make sure that the schema aligns with your dataset, if it does not, we will
 be unable to extract data from the dataset.
 It is required for most models, but optional for Vertex AI AutoML Tables
 unless the schem information is not available.
 .google.cloud.aiplatform.v1beta1.ModelMonitoringSchema model_monitoring_schema = 9;
 
    public ModelMonitor.ModelMonitoringTarget getModelMonitoringTarget()
   
   The entity that is subject to analysis.
 Currently only models in Vertex AI Model Registry are supported. If you
 want to analyze the model which is outside the Vertex AI, you could
 register a model in Vertex AI Model Registry using just a display name.
 
 .google.cloud.aiplatform.v1beta1.ModelMonitor.ModelMonitoringTarget model_monitoring_target = 3;
 
    public ModelMonitor.ModelMonitoringTargetOrBuilder getModelMonitoringTargetOrBuilder()
   
   The entity that is subject to analysis.
 Currently only models in Vertex AI Model Registry are supported. If you
 want to analyze the model which is outside the Vertex AI, you could
 register a model in Vertex AI Model Registry using just a display name.
 
 .google.cloud.aiplatform.v1beta1.ModelMonitor.ModelMonitoringTarget model_monitoring_target = 3;
 
 Immutable. Resource name of the ModelMonitor. Format:
 projects/{project}/locations/{location}/modelMonitors/{model_monitor}.
 string name = 1 [(.google.api.field_behavior) = IMMUTABLE];
    
      
        | Returns | 
      
        | Type | Description | 
      
        | String | The name. | 
    
  
  
  
  
    public ByteString getNameBytes()
   
   Immutable. Resource name of the ModelMonitor. Format:
 projects/{project}/locations/{location}/modelMonitors/{model_monitor}.
 string name = 1 [(.google.api.field_behavior) = IMMUTABLE];
    
      
        | Returns | 
      
        | Type | Description | 
      
        | ByteString | The bytes for name. | 
    
  
  
  
  
    public ModelMonitoringNotificationSpec getNotificationSpec()
   
   Optional default notification spec, it can be overridden in the
 ModelMonitoringJob notification spec.
 .google.cloud.aiplatform.v1beta1.ModelMonitoringNotificationSpec notification_spec = 12;
 
    public ModelMonitoringNotificationSpecOrBuilder getNotificationSpecOrBuilder()
   
   Optional default notification spec, it can be overridden in the
 ModelMonitoringJob notification spec.
 .google.cloud.aiplatform.v1beta1.ModelMonitoringNotificationSpec notification_spec = 12;
 
    public ModelMonitoringOutputSpec getOutputSpec()
   
   Optional default monitoring metrics/logs export spec, it can be overridden
 in the ModelMonitoringJob output spec.
 If not specified, a default Google Cloud Storage bucket will be created
 under your project.
 .google.cloud.aiplatform.v1beta1.ModelMonitoringOutputSpec output_spec = 13;
    public ModelMonitoringOutputSpecOrBuilder getOutputSpecOrBuilder()
   
   Optional default monitoring metrics/logs export spec, it can be overridden
 in the ModelMonitoringJob output spec.
 If not specified, a default Google Cloud Storage bucket will be created
 under your project.
 .google.cloud.aiplatform.v1beta1.ModelMonitoringOutputSpec output_spec = 13;
    public Parser<ModelMonitor> getParserForType()
   
  
  Overrides
  
  
  
  
    public boolean getSatisfiesPzi()
   
   Output only. Reserved for future use.
 bool satisfies_pzi = 18 [(.google.api.field_behavior) = OUTPUT_ONLY];
    
      
        | Returns | 
      
        | Type | Description | 
      
        | boolean | The satisfiesPzi. | 
    
  
  
  
  
    public boolean getSatisfiesPzs()
   
   Output only. Reserved for future use.
 bool satisfies_pzs = 17 [(.google.api.field_behavior) = OUTPUT_ONLY];
    
      
        | Returns | 
      
        | Type | Description | 
      
        | boolean | The satisfiesPzs. | 
    
  
  
  
  
    public int getSerializedSize()
   
  
    
      
        | Returns | 
      
        | Type | Description | 
      
        | int |  | 
    
  
  Overrides
  
  
  
  
    public ModelMonitoringObjectiveSpec.TabularObjective getTabularObjective()
   
   Optional default tabular model monitoring objective.
 
 .google.cloud.aiplatform.v1beta1.ModelMonitoringObjectiveSpec.TabularObjective tabular_objective = 11;
 
    public ModelMonitoringObjectiveSpec.TabularObjectiveOrBuilder getTabularObjectiveOrBuilder()
   
   Optional default tabular model monitoring objective.
 
 .google.cloud.aiplatform.v1beta1.ModelMonitoringObjectiveSpec.TabularObjective tabular_objective = 11;
 
    public ModelMonitoringInput getTrainingDataset()
   
   Optional training dataset used to train the model.
 It can serve as a reference dataset to identify changes in production.
 .google.cloud.aiplatform.v1beta1.ModelMonitoringInput training_dataset = 10;
    public ModelMonitoringInputOrBuilder getTrainingDatasetOrBuilder()
   
   Optional training dataset used to train the model.
 It can serve as a reference dataset to identify changes in production.
 .google.cloud.aiplatform.v1beta1.ModelMonitoringInput training_dataset = 10;
    public Timestamp getUpdateTime()
   
   Output only. Timestamp when this ModelMonitor was updated most recently.
 .google.protobuf.Timestamp update_time = 7 [(.google.api.field_behavior) = OUTPUT_ONLY];
 
    
      
        | Returns | 
      
        | Type | Description | 
      
        | Timestamp | The updateTime. | 
    
  
  
  
  
    public TimestampOrBuilder getUpdateTimeOrBuilder()
   
   Output only. Timestamp when this ModelMonitor was updated most recently.
 .google.protobuf.Timestamp update_time = 7 [(.google.api.field_behavior) = OUTPUT_ONLY];
 
    public boolean hasCreateTime()
   
   Output only. Timestamp when this ModelMonitor was created.
 .google.protobuf.Timestamp create_time = 6 [(.google.api.field_behavior) = OUTPUT_ONLY];
 
    
      
        | Returns | 
      
        | Type | Description | 
      
        | boolean | Whether the createTime field is set. | 
    
  
  
  
  
    public boolean hasEncryptionSpec()
   
   Customer-managed encryption key spec for a ModelMonitor. If
 set, this ModelMonitor and all sub-resources of this
 ModelMonitor will be secured by this key.
 .google.cloud.aiplatform.v1beta1.EncryptionSpec encryption_spec = 5;
    
      
        | Returns | 
      
        | Type | Description | 
      
        | boolean | Whether the encryptionSpec field is set. | 
    
  
  
  
  
    public boolean hasExplanationSpec()
   
   Optional model explanation spec. It is used for feature attribution
 monitoring.
 .google.cloud.aiplatform.v1beta1.ExplanationSpec explanation_spec = 16;
    
      
        | Returns | 
      
        | Type | Description | 
      
        | boolean | Whether the explanationSpec field is set. | 
    
  
  
  
  
    public boolean hasModelMonitoringSchema()
   
   Monitoring Schema is to specify the model's features, prediction outputs
 and ground truth properties. It is used to extract pertinent data from the
 dataset and to process features based on their properties.
 Make sure that the schema aligns with your dataset, if it does not, we will
 be unable to extract data from the dataset.
 It is required for most models, but optional for Vertex AI AutoML Tables
 unless the schem information is not available.
 .google.cloud.aiplatform.v1beta1.ModelMonitoringSchema model_monitoring_schema = 9;
 
    
      
        | Returns | 
      
        | Type | Description | 
      
        | boolean | Whether the modelMonitoringSchema field is set. | 
    
  
  
  
  
    public boolean hasModelMonitoringTarget()
   
   The entity that is subject to analysis.
 Currently only models in Vertex AI Model Registry are supported. If you
 want to analyze the model which is outside the Vertex AI, you could
 register a model in Vertex AI Model Registry using just a display name.
 
 .google.cloud.aiplatform.v1beta1.ModelMonitor.ModelMonitoringTarget model_monitoring_target = 3;
 
    
      
        | Returns | 
      
        | Type | Description | 
      
        | boolean | Whether the modelMonitoringTarget field is set. | 
    
  
  
  
  
    public boolean hasNotificationSpec()
   
   Optional default notification spec, it can be overridden in the
 ModelMonitoringJob notification spec.
 .google.cloud.aiplatform.v1beta1.ModelMonitoringNotificationSpec notification_spec = 12;
 
    
      
        | Returns | 
      
        | Type | Description | 
      
        | boolean | Whether the notificationSpec field is set. | 
    
  
  
  
  
    public boolean hasOutputSpec()
   
   Optional default monitoring metrics/logs export spec, it can be overridden
 in the ModelMonitoringJob output spec.
 If not specified, a default Google Cloud Storage bucket will be created
 under your project.
 .google.cloud.aiplatform.v1beta1.ModelMonitoringOutputSpec output_spec = 13;
    
      
        | Returns | 
      
        | Type | Description | 
      
        | boolean | Whether the outputSpec field is set. | 
    
  
  
  
  
    public boolean hasTabularObjective()
   
   Optional default tabular model monitoring objective.
 
 .google.cloud.aiplatform.v1beta1.ModelMonitoringObjectiveSpec.TabularObjective tabular_objective = 11;
 
    
      
        | Returns | 
      
        | Type | Description | 
      
        | boolean | Whether the tabularObjective field is set. | 
    
  
  
  
  
    public boolean hasTrainingDataset()
   
   Optional training dataset used to train the model.
 It can serve as a reference dataset to identify changes in production.
 .google.cloud.aiplatform.v1beta1.ModelMonitoringInput training_dataset = 10;
    
      
        | Returns | 
      
        | Type | Description | 
      
        | boolean | Whether the trainingDataset field is set. | 
    
  
  
  
  
    public boolean hasUpdateTime()
   
   Output only. Timestamp when this ModelMonitor was updated most recently.
 .google.protobuf.Timestamp update_time = 7 [(.google.api.field_behavior) = OUTPUT_ONLY];
 
    
      
        | Returns | 
      
        | Type | Description | 
      
        | boolean | Whether the updateTime field is set. | 
    
  
  
  
  
  
    
      
        | Returns | 
      
        | Type | Description | 
      
        | int |  | 
    
  
  Overrides
  
  
  
  
    protected GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable()
   
  
  Overrides
  
  
  
  
    public final boolean isInitialized()
   
  
  Overrides
  
  
  
  
    public ModelMonitor.Builder newBuilderForType()
   
  
  
  
  
    protected ModelMonitor.Builder newBuilderForType(GeneratedMessageV3.BuilderParent parent)
   
  
  
  Overrides
  
  
  
  
    protected Object newInstance(GeneratedMessageV3.UnusedPrivateParameter unused)
   
  
  
    
      
        | Returns | 
      
        | Type | Description | 
      
        | Object |  | 
    
  
  Overrides
  
  
  
  
    public ModelMonitor.Builder toBuilder()
   
  
  
  
  
    public void writeTo(CodedOutputStream output)
   
  
  Overrides