- 3.79.0 (latest)
- 3.77.0
- 3.76.0
- 3.75.0
- 3.74.0
- 3.73.0
- 3.71.0
- 3.69.0
- 3.68.0
- 3.65.0
- 3.64.0
- 3.63.0
- 3.61.0
- 3.60.0
- 3.59.0
- 3.58.0
- 3.57.0
- 3.56.0
- 3.55.0
- 3.54.0
- 3.53.0
- 3.52.0
- 3.50.0
- 3.49.0
- 3.48.0
- 3.47.0
- 3.46.0
- 3.45.0
- 3.44.0
- 3.43.0
- 3.42.0
- 3.41.0
- 3.40.0
- 3.38.0
- 3.37.0
- 3.36.0
- 3.35.0
- 3.34.0
- 3.33.0
- 3.32.0
- 3.31.0
- 3.30.0
- 3.29.0
- 3.28.0
- 3.25.0
- 3.24.0
- 3.23.0
- 3.22.0
- 3.21.0
- 3.20.0
- 3.19.0
- 3.18.0
- 3.17.0
- 3.16.0
- 3.15.0
- 3.14.0
- 3.13.0
- 3.12.0
- 3.11.0
- 3.10.0
- 3.9.0
- 3.8.0
- 3.7.0
- 3.6.0
- 3.5.0
- 3.4.2
- 3.3.0
- 3.2.0
- 3.0.0
- 2.9.8
- 2.8.9
- 2.7.4
- 2.5.3
- 2.4.0
public static final class StudySpec.ConvexStopConfig.Builder extends GeneratedMessageV3.Builder<StudySpec.ConvexStopConfig.Builder> implements StudySpec.ConvexStopConfigOrBuilderConfiguration for ConvexStopPolicy.
 Protobuf type google.cloud.aiplatform.v1beta1.StudySpec.ConvexStopConfig
Inheritance
Object > AbstractMessageLite.Builder<MessageType,BuilderType> > AbstractMessage.Builder<BuilderType> > GeneratedMessageV3.Builder > StudySpec.ConvexStopConfig.BuilderImplements
StudySpec.ConvexStopConfigOrBuilderStatic Methods
getDescriptor()
public static final Descriptors.Descriptor getDescriptor()| Returns | |
|---|---|
| Type | Description | 
| Descriptor | |
Methods
addRepeatedField(Descriptors.FieldDescriptor field, Object value)
public StudySpec.ConvexStopConfig.Builder addRepeatedField(Descriptors.FieldDescriptor field, Object value)| Parameters | |
|---|---|
| Name | Description | 
| field | FieldDescriptor | 
| value | Object | 
| Returns | |
|---|---|
| Type | Description | 
| StudySpec.ConvexStopConfig.Builder | |
build()
public StudySpec.ConvexStopConfig build()| Returns | |
|---|---|
| Type | Description | 
| StudySpec.ConvexStopConfig | |
buildPartial()
public StudySpec.ConvexStopConfig buildPartial()| Returns | |
|---|---|
| Type | Description | 
| StudySpec.ConvexStopConfig | |
clear()
public StudySpec.ConvexStopConfig.Builder clear()| Returns | |
|---|---|
| Type | Description | 
| StudySpec.ConvexStopConfig.Builder | |
clearAutoregressiveOrder()
public StudySpec.ConvexStopConfig.Builder clearAutoregressiveOrder()The number of Trial measurements used in autoregressive model for value prediction. A trial won't be considered early stopping if has fewer measurement points.
 int64 autoregressive_order = 3;
| Returns | |
|---|---|
| Type | Description | 
| StudySpec.ConvexStopConfig.Builder | This builder for chaining. | 
clearField(Descriptors.FieldDescriptor field)
public StudySpec.ConvexStopConfig.Builder clearField(Descriptors.FieldDescriptor field)| Parameter | |
|---|---|
| Name | Description | 
| field | FieldDescriptor | 
| Returns | |
|---|---|
| Type | Description | 
| StudySpec.ConvexStopConfig.Builder | |
clearLearningRateParameterName()
public StudySpec.ConvexStopConfig.Builder clearLearningRateParameterName()The hyper-parameter name used in the tuning job that stands for learning rate. Leave it blank if learning rate is not in a parameter in tuning. The learning_rate is used to estimate the objective value of the ongoing trial.
 string learning_rate_parameter_name = 4;
| Returns | |
|---|---|
| Type | Description | 
| StudySpec.ConvexStopConfig.Builder | This builder for chaining. | 
clearMaxNumSteps()
public StudySpec.ConvexStopConfig.Builder clearMaxNumSteps()Steps used in predicting the final objective for early stopped trials. In general, it's set to be the same as the defined steps in training / tuning. When use_steps is false, this field is set to the maximum elapsed seconds.
 int64 max_num_steps = 1;
| Returns | |
|---|---|
| Type | Description | 
| StudySpec.ConvexStopConfig.Builder | This builder for chaining. | 
clearMinNumSteps()
public StudySpec.ConvexStopConfig.Builder clearMinNumSteps()Minimum number of steps for a trial to complete. Trials which do not have a measurement with num_steps > min_num_steps won't be considered for early stopping. It's ok to set it to 0, and a trial can be early stopped at any stage. By default, min_num_steps is set to be one-tenth of the max_num_steps. When use_steps is false, this field is set to the minimum elapsed seconds.
 int64 min_num_steps = 2;
| Returns | |
|---|---|
| Type | Description | 
| StudySpec.ConvexStopConfig.Builder | This builder for chaining. | 
clearOneof(Descriptors.OneofDescriptor oneof)
public StudySpec.ConvexStopConfig.Builder clearOneof(Descriptors.OneofDescriptor oneof)| Parameter | |
|---|---|
| Name | Description | 
| oneof | OneofDescriptor | 
| Returns | |
|---|---|
| Type | Description | 
| StudySpec.ConvexStopConfig.Builder | |
clearUseSeconds()
public StudySpec.ConvexStopConfig.Builder clearUseSeconds()This bool determines whether or not the rule is applied based on elapsed_secs or steps. If use_seconds==false, the early stopping decision is made according to the predicted objective values according to the target steps. If use_seconds==true, elapsed_secs is used instead of steps. Also, in this case, the parameters max_num_steps and min_num_steps are overloaded to contain max_elapsed_seconds and min_elapsed_seconds.
 bool use_seconds = 5;
| Returns | |
|---|---|
| Type | Description | 
| StudySpec.ConvexStopConfig.Builder | This builder for chaining. | 
clone()
public StudySpec.ConvexStopConfig.Builder clone()| Returns | |
|---|---|
| Type | Description | 
| StudySpec.ConvexStopConfig.Builder | |
getAutoregressiveOrder()
public long getAutoregressiveOrder()The number of Trial measurements used in autoregressive model for value prediction. A trial won't be considered early stopping if has fewer measurement points.
 int64 autoregressive_order = 3;
| Returns | |
|---|---|
| Type | Description | 
| long | The autoregressiveOrder. | 
getDefaultInstanceForType()
public StudySpec.ConvexStopConfig getDefaultInstanceForType()| Returns | |
|---|---|
| Type | Description | 
| StudySpec.ConvexStopConfig | |
getDescriptorForType()
public Descriptors.Descriptor getDescriptorForType()| Returns | |
|---|---|
| Type | Description | 
| Descriptor | |
getLearningRateParameterName()
public String getLearningRateParameterName()The hyper-parameter name used in the tuning job that stands for learning rate. Leave it blank if learning rate is not in a parameter in tuning. The learning_rate is used to estimate the objective value of the ongoing trial.
 string learning_rate_parameter_name = 4;
| Returns | |
|---|---|
| Type | Description | 
| String | The learningRateParameterName. | 
getLearningRateParameterNameBytes()
public ByteString getLearningRateParameterNameBytes()The hyper-parameter name used in the tuning job that stands for learning rate. Leave it blank if learning rate is not in a parameter in tuning. The learning_rate is used to estimate the objective value of the ongoing trial.
 string learning_rate_parameter_name = 4;
| Returns | |
|---|---|
| Type | Description | 
| ByteString | The bytes for learningRateParameterName. | 
getMaxNumSteps()
public long getMaxNumSteps()Steps used in predicting the final objective for early stopped trials. In general, it's set to be the same as the defined steps in training / tuning. When use_steps is false, this field is set to the maximum elapsed seconds.
 int64 max_num_steps = 1;
| Returns | |
|---|---|
| Type | Description | 
| long | The maxNumSteps. | 
getMinNumSteps()
public long getMinNumSteps()Minimum number of steps for a trial to complete. Trials which do not have a measurement with num_steps > min_num_steps won't be considered for early stopping. It's ok to set it to 0, and a trial can be early stopped at any stage. By default, min_num_steps is set to be one-tenth of the max_num_steps. When use_steps is false, this field is set to the minimum elapsed seconds.
 int64 min_num_steps = 2;
| Returns | |
|---|---|
| Type | Description | 
| long | The minNumSteps. | 
getUseSeconds()
public boolean getUseSeconds()This bool determines whether or not the rule is applied based on elapsed_secs or steps. If use_seconds==false, the early stopping decision is made according to the predicted objective values according to the target steps. If use_seconds==true, elapsed_secs is used instead of steps. Also, in this case, the parameters max_num_steps and min_num_steps are overloaded to contain max_elapsed_seconds and min_elapsed_seconds.
 bool use_seconds = 5;
| Returns | |
|---|---|
| Type | Description | 
| boolean | The useSeconds. | 
internalGetFieldAccessorTable()
protected GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable()| Returns | |
|---|---|
| Type | Description | 
| FieldAccessorTable | |
isInitialized()
public final boolean isInitialized()| Returns | |
|---|---|
| Type | Description | 
| boolean | |
mergeFrom(StudySpec.ConvexStopConfig other)
public StudySpec.ConvexStopConfig.Builder mergeFrom(StudySpec.ConvexStopConfig other)| Parameter | |
|---|---|
| Name | Description | 
| other | StudySpec.ConvexStopConfig | 
| Returns | |
|---|---|
| Type | Description | 
| StudySpec.ConvexStopConfig.Builder | |
mergeFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)
public StudySpec.ConvexStopConfig.Builder mergeFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)| Parameters | |
|---|---|
| Name | Description | 
| input | CodedInputStream | 
| extensionRegistry | ExtensionRegistryLite | 
| Returns | |
|---|---|
| Type | Description | 
| StudySpec.ConvexStopConfig.Builder | |
| Exceptions | |
|---|---|
| Type | Description | 
| IOException | |
mergeFrom(Message other)
public StudySpec.ConvexStopConfig.Builder mergeFrom(Message other)| Parameter | |
|---|---|
| Name | Description | 
| other | Message | 
| Returns | |
|---|---|
| Type | Description | 
| StudySpec.ConvexStopConfig.Builder | |
mergeUnknownFields(UnknownFieldSet unknownFields)
public final StudySpec.ConvexStopConfig.Builder mergeUnknownFields(UnknownFieldSet unknownFields)| Parameter | |
|---|---|
| Name | Description | 
| unknownFields | UnknownFieldSet | 
| Returns | |
|---|---|
| Type | Description | 
| StudySpec.ConvexStopConfig.Builder | |
setAutoregressiveOrder(long value)
public StudySpec.ConvexStopConfig.Builder setAutoregressiveOrder(long value)The number of Trial measurements used in autoregressive model for value prediction. A trial won't be considered early stopping if has fewer measurement points.
 int64 autoregressive_order = 3;
| Parameter | |
|---|---|
| Name | Description | 
| value | longThe autoregressiveOrder to set. | 
| Returns | |
|---|---|
| Type | Description | 
| StudySpec.ConvexStopConfig.Builder | This builder for chaining. | 
setField(Descriptors.FieldDescriptor field, Object value)
public StudySpec.ConvexStopConfig.Builder setField(Descriptors.FieldDescriptor field, Object value)| Parameters | |
|---|---|
| Name | Description | 
| field | FieldDescriptor | 
| value | Object | 
| Returns | |
|---|---|
| Type | Description | 
| StudySpec.ConvexStopConfig.Builder | |
setLearningRateParameterName(String value)
public StudySpec.ConvexStopConfig.Builder setLearningRateParameterName(String value)The hyper-parameter name used in the tuning job that stands for learning rate. Leave it blank if learning rate is not in a parameter in tuning. The learning_rate is used to estimate the objective value of the ongoing trial.
 string learning_rate_parameter_name = 4;
| Parameter | |
|---|---|
| Name | Description | 
| value | StringThe learningRateParameterName to set. | 
| Returns | |
|---|---|
| Type | Description | 
| StudySpec.ConvexStopConfig.Builder | This builder for chaining. | 
setLearningRateParameterNameBytes(ByteString value)
public StudySpec.ConvexStopConfig.Builder setLearningRateParameterNameBytes(ByteString value)The hyper-parameter name used in the tuning job that stands for learning rate. Leave it blank if learning rate is not in a parameter in tuning. The learning_rate is used to estimate the objective value of the ongoing trial.
 string learning_rate_parameter_name = 4;
| Parameter | |
|---|---|
| Name | Description | 
| value | ByteStringThe bytes for learningRateParameterName to set. | 
| Returns | |
|---|---|
| Type | Description | 
| StudySpec.ConvexStopConfig.Builder | This builder for chaining. | 
setMaxNumSteps(long value)
public StudySpec.ConvexStopConfig.Builder setMaxNumSteps(long value)Steps used in predicting the final objective for early stopped trials. In general, it's set to be the same as the defined steps in training / tuning. When use_steps is false, this field is set to the maximum elapsed seconds.
 int64 max_num_steps = 1;
| Parameter | |
|---|---|
| Name | Description | 
| value | longThe maxNumSteps to set. | 
| Returns | |
|---|---|
| Type | Description | 
| StudySpec.ConvexStopConfig.Builder | This builder for chaining. | 
setMinNumSteps(long value)
public StudySpec.ConvexStopConfig.Builder setMinNumSteps(long value)Minimum number of steps for a trial to complete. Trials which do not have a measurement with num_steps > min_num_steps won't be considered for early stopping. It's ok to set it to 0, and a trial can be early stopped at any stage. By default, min_num_steps is set to be one-tenth of the max_num_steps. When use_steps is false, this field is set to the minimum elapsed seconds.
 int64 min_num_steps = 2;
| Parameter | |
|---|---|
| Name | Description | 
| value | longThe minNumSteps to set. | 
| Returns | |
|---|---|
| Type | Description | 
| StudySpec.ConvexStopConfig.Builder | This builder for chaining. | 
setRepeatedField(Descriptors.FieldDescriptor field, int index, Object value)
public StudySpec.ConvexStopConfig.Builder setRepeatedField(Descriptors.FieldDescriptor field, int index, Object value)| Parameters | |
|---|---|
| Name | Description | 
| field | FieldDescriptor | 
| index | int | 
| value | Object | 
| Returns | |
|---|---|
| Type | Description | 
| StudySpec.ConvexStopConfig.Builder | |
setUnknownFields(UnknownFieldSet unknownFields)
public final StudySpec.ConvexStopConfig.Builder setUnknownFields(UnknownFieldSet unknownFields)| Parameter | |
|---|---|
| Name | Description | 
| unknownFields | UnknownFieldSet | 
| Returns | |
|---|---|
| Type | Description | 
| StudySpec.ConvexStopConfig.Builder | |
setUseSeconds(boolean value)
public StudySpec.ConvexStopConfig.Builder setUseSeconds(boolean value)This bool determines whether or not the rule is applied based on elapsed_secs or steps. If use_seconds==false, the early stopping decision is made according to the predicted objective values according to the target steps. If use_seconds==true, elapsed_secs is used instead of steps. Also, in this case, the parameters max_num_steps and min_num_steps are overloaded to contain max_elapsed_seconds and min_elapsed_seconds.
 bool use_seconds = 5;
| Parameter | |
|---|---|
| Name | Description | 
| value | booleanThe useSeconds to set. | 
| Returns | |
|---|---|
| Type | Description | 
| StudySpec.ConvexStopConfig.Builder | This builder for chaining. |