- 0.89.0 (latest)
- 0.87.0
- 0.86.0
- 0.85.0
- 0.84.0
- 0.83.0
- 0.81.0
- 0.79.0
- 0.78.0
- 0.75.0
- 0.74.0
- 0.73.0
- 0.71.0
- 0.70.0
- 0.69.0
- 0.68.0
- 0.67.0
- 0.66.0
- 0.65.0
- 0.64.0
- 0.63.0
- 0.62.0
- 0.60.0
- 0.59.0
- 0.58.0
- 0.57.0
- 0.56.0
- 0.55.0
- 0.54.0
- 0.53.0
- 0.52.0
- 0.51.0
- 0.50.0
- 0.48.0
- 0.47.0
- 0.46.0
- 0.45.0
- 0.44.0
- 0.43.0
- 0.42.0
- 0.41.0
- 0.40.0
- 0.39.0
- 0.38.0
- 0.35.0
- 0.34.0
- 0.33.0
- 0.32.0
- 0.31.0
- 0.30.0
- 0.29.0
- 0.28.0
- 0.27.0
- 0.26.0
- 0.25.0
- 0.24.0
- 0.23.0
- 0.22.0
- 0.20.0
- 0.19.0
- 0.18.0
- 0.17.0
- 0.16.0
- 0.15.0
- 0.14.7
- 0.13.1
- 0.12.1
- 0.11.5
public static final class Generator.ModelParameter.Builder extends GeneratedMessageV3.Builder<Generator.ModelParameter.Builder> implements Generator.ModelParameterOrBuilderParameters to be passed to the LLM. If not set, default values will be used.
 Protobuf type google.cloud.dialogflow.cx.v3beta1.Generator.ModelParameter
Inheritance
Object > AbstractMessageLite.Builder<MessageType,BuilderType> > AbstractMessage.Builder<BuilderType> > GeneratedMessageV3.Builder > Generator.ModelParameter.BuilderImplements
Generator.ModelParameterOrBuilderStatic Methods
getDescriptor()
public static final Descriptors.Descriptor getDescriptor()| Returns | |
|---|---|
| Type | Description | 
| Descriptor | |
Methods
addRepeatedField(Descriptors.FieldDescriptor field, Object value)
public Generator.ModelParameter.Builder addRepeatedField(Descriptors.FieldDescriptor field, Object value)| Parameters | |
|---|---|
| Name | Description | 
| field | FieldDescriptor | 
| value | Object | 
| Returns | |
|---|---|
| Type | Description | 
| Generator.ModelParameter.Builder | |
build()
public Generator.ModelParameter build()| Returns | |
|---|---|
| Type | Description | 
| Generator.ModelParameter | |
buildPartial()
public Generator.ModelParameter buildPartial()| Returns | |
|---|---|
| Type | Description | 
| Generator.ModelParameter | |
clear()
public Generator.ModelParameter.Builder clear()| Returns | |
|---|---|
| Type | Description | 
| Generator.ModelParameter.Builder | |
clearField(Descriptors.FieldDescriptor field)
public Generator.ModelParameter.Builder clearField(Descriptors.FieldDescriptor field)| Parameter | |
|---|---|
| Name | Description | 
| field | FieldDescriptor | 
| Returns | |
|---|---|
| Type | Description | 
| Generator.ModelParameter.Builder | |
clearMaxDecodeSteps()
public Generator.ModelParameter.Builder clearMaxDecodeSteps()The maximum number of tokens to generate.
 optional int32 max_decode_steps = 2;
| Returns | |
|---|---|
| Type | Description | 
| Generator.ModelParameter.Builder | This builder for chaining. | 
clearOneof(Descriptors.OneofDescriptor oneof)
public Generator.ModelParameter.Builder clearOneof(Descriptors.OneofDescriptor oneof)| Parameter | |
|---|---|
| Name | Description | 
| oneof | OneofDescriptor | 
| Returns | |
|---|---|
| Type | Description | 
| Generator.ModelParameter.Builder | |
clearTemperature()
public Generator.ModelParameter.Builder clearTemperature()The temperature used for sampling. Temperature sampling occurs after both topP and topK have been applied. Valid range: [0.0, 1.0] Low temperature = less random. High temperature = more random.
 optional float temperature = 1;
| Returns | |
|---|---|
| Type | Description | 
| Generator.ModelParameter.Builder | This builder for chaining. | 
clearTopK()
public Generator.ModelParameter.Builder clearTopK()If set, the sampling process in each step is limited to the top_k tokens with highest probabilities. Valid range: [1, 40] or 1000+. Small topK = less random. Large topK = more random.
 optional int32 top_k = 4;
| Returns | |
|---|---|
| Type | Description | 
| Generator.ModelParameter.Builder | This builder for chaining. | 
clearTopP()
public Generator.ModelParameter.Builder clearTopP()If set, only the tokens comprising the top top_p probability mass are considered. If both top_p and top_k are set, top_p will be used for further refining candidates selected with top_k. Valid range: (0.0, 1.0]. Small topP = less random. Large topP = more random.
 optional float top_p = 3;
| Returns | |
|---|---|
| Type | Description | 
| Generator.ModelParameter.Builder | This builder for chaining. | 
clone()
public Generator.ModelParameter.Builder clone()| Returns | |
|---|---|
| Type | Description | 
| Generator.ModelParameter.Builder | |
getDefaultInstanceForType()
public Generator.ModelParameter getDefaultInstanceForType()| Returns | |
|---|---|
| Type | Description | 
| Generator.ModelParameter | |
getDescriptorForType()
public Descriptors.Descriptor getDescriptorForType()| Returns | |
|---|---|
| Type | Description | 
| Descriptor | |
getMaxDecodeSteps()
public int getMaxDecodeSteps()The maximum number of tokens to generate.
 optional int32 max_decode_steps = 2;
| Returns | |
|---|---|
| Type | Description | 
| int | The maxDecodeSteps. | 
getTemperature()
public float getTemperature()The temperature used for sampling. Temperature sampling occurs after both topP and topK have been applied. Valid range: [0.0, 1.0] Low temperature = less random. High temperature = more random.
 optional float temperature = 1;
| Returns | |
|---|---|
| Type | Description | 
| float | The temperature. | 
getTopK()
public int getTopK()If set, the sampling process in each step is limited to the top_k tokens with highest probabilities. Valid range: [1, 40] or 1000+. Small topK = less random. Large topK = more random.
 optional int32 top_k = 4;
| Returns | |
|---|---|
| Type | Description | 
| int | The topK. | 
getTopP()
public float getTopP()If set, only the tokens comprising the top top_p probability mass are considered. If both top_p and top_k are set, top_p will be used for further refining candidates selected with top_k. Valid range: (0.0, 1.0]. Small topP = less random. Large topP = more random.
 optional float top_p = 3;
| Returns | |
|---|---|
| Type | Description | 
| float | The topP. | 
hasMaxDecodeSteps()
public boolean hasMaxDecodeSteps()The maximum number of tokens to generate.
 optional int32 max_decode_steps = 2;
| Returns | |
|---|---|
| Type | Description | 
| boolean | Whether the maxDecodeSteps field is set. | 
hasTemperature()
public boolean hasTemperature()The temperature used for sampling. Temperature sampling occurs after both topP and topK have been applied. Valid range: [0.0, 1.0] Low temperature = less random. High temperature = more random.
 optional float temperature = 1;
| Returns | |
|---|---|
| Type | Description | 
| boolean | Whether the temperature field is set. | 
hasTopK()
public boolean hasTopK()If set, the sampling process in each step is limited to the top_k tokens with highest probabilities. Valid range: [1, 40] or 1000+. Small topK = less random. Large topK = more random.
 optional int32 top_k = 4;
| Returns | |
|---|---|
| Type | Description | 
| boolean | Whether the topK field is set. | 
hasTopP()
public boolean hasTopP()If set, only the tokens comprising the top top_p probability mass are considered. If both top_p and top_k are set, top_p will be used for further refining candidates selected with top_k. Valid range: (0.0, 1.0]. Small topP = less random. Large topP = more random.
 optional float top_p = 3;
| Returns | |
|---|---|
| Type | Description | 
| boolean | Whether the topP field is set. | 
internalGetFieldAccessorTable()
protected GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable()| Returns | |
|---|---|
| Type | Description | 
| FieldAccessorTable | |
isInitialized()
public final boolean isInitialized()| Returns | |
|---|---|
| Type | Description | 
| boolean | |
mergeFrom(Generator.ModelParameter other)
public Generator.ModelParameter.Builder mergeFrom(Generator.ModelParameter other)| Parameter | |
|---|---|
| Name | Description | 
| other | Generator.ModelParameter | 
| Returns | |
|---|---|
| Type | Description | 
| Generator.ModelParameter.Builder | |
mergeFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)
public Generator.ModelParameter.Builder mergeFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)| Parameters | |
|---|---|
| Name | Description | 
| input | CodedInputStream | 
| extensionRegistry | ExtensionRegistryLite | 
| Returns | |
|---|---|
| Type | Description | 
| Generator.ModelParameter.Builder | |
| Exceptions | |
|---|---|
| Type | Description | 
| IOException | |
mergeFrom(Message other)
public Generator.ModelParameter.Builder mergeFrom(Message other)| Parameter | |
|---|---|
| Name | Description | 
| other | Message | 
| Returns | |
|---|---|
| Type | Description | 
| Generator.ModelParameter.Builder | |
mergeUnknownFields(UnknownFieldSet unknownFields)
public final Generator.ModelParameter.Builder mergeUnknownFields(UnknownFieldSet unknownFields)| Parameter | |
|---|---|
| Name | Description | 
| unknownFields | UnknownFieldSet | 
| Returns | |
|---|---|
| Type | Description | 
| Generator.ModelParameter.Builder | |
setField(Descriptors.FieldDescriptor field, Object value)
public Generator.ModelParameter.Builder setField(Descriptors.FieldDescriptor field, Object value)| Parameters | |
|---|---|
| Name | Description | 
| field | FieldDescriptor | 
| value | Object | 
| Returns | |
|---|---|
| Type | Description | 
| Generator.ModelParameter.Builder | |
setMaxDecodeSteps(int value)
public Generator.ModelParameter.Builder setMaxDecodeSteps(int value)The maximum number of tokens to generate.
 optional int32 max_decode_steps = 2;
| Parameter | |
|---|---|
| Name | Description | 
| value | intThe maxDecodeSteps to set. | 
| Returns | |
|---|---|
| Type | Description | 
| Generator.ModelParameter.Builder | This builder for chaining. | 
setRepeatedField(Descriptors.FieldDescriptor field, int index, Object value)
public Generator.ModelParameter.Builder setRepeatedField(Descriptors.FieldDescriptor field, int index, Object value)| Parameters | |
|---|---|
| Name | Description | 
| field | FieldDescriptor | 
| index | int | 
| value | Object | 
| Returns | |
|---|---|
| Type | Description | 
| Generator.ModelParameter.Builder | |
setTemperature(float value)
public Generator.ModelParameter.Builder setTemperature(float value)The temperature used for sampling. Temperature sampling occurs after both topP and topK have been applied. Valid range: [0.0, 1.0] Low temperature = less random. High temperature = more random.
 optional float temperature = 1;
| Parameter | |
|---|---|
| Name | Description | 
| value | floatThe temperature to set. | 
| Returns | |
|---|---|
| Type | Description | 
| Generator.ModelParameter.Builder | This builder for chaining. | 
setTopK(int value)
public Generator.ModelParameter.Builder setTopK(int value)If set, the sampling process in each step is limited to the top_k tokens with highest probabilities. Valid range: [1, 40] or 1000+. Small topK = less random. Large topK = more random.
 optional int32 top_k = 4;
| Parameter | |
|---|---|
| Name | Description | 
| value | intThe topK to set. | 
| Returns | |
|---|---|
| Type | Description | 
| Generator.ModelParameter.Builder | This builder for chaining. | 
setTopP(float value)
public Generator.ModelParameter.Builder setTopP(float value)If set, only the tokens comprising the top top_p probability mass are considered. If both top_p and top_k are set, top_p will be used for further refining candidates selected with top_k. Valid range: (0.0, 1.0]. Small topP = less random. Large topP = more random.
 optional float top_p = 3;
| Parameter | |
|---|---|
| Name | Description | 
| value | floatThe topP to set. | 
| Returns | |
|---|---|
| Type | Description | 
| Generator.ModelParameter.Builder | This builder for chaining. | 
setUnknownFields(UnknownFieldSet unknownFields)
public final Generator.ModelParameter.Builder setUnknownFields(UnknownFieldSet unknownFields)| Parameter | |
|---|---|
| Name | Description | 
| unknownFields | UnknownFieldSet | 
| Returns | |
|---|---|
| Type | Description | 
| Generator.ModelParameter.Builder | |