- 4.84.0 (latest)
- 4.82.0
- 4.81.0
- 4.80.0
- 4.79.0
- 4.78.0
- 4.76.0
- 4.74.0
- 4.73.0
- 4.70.0
- 4.69.0
- 4.68.0
- 4.66.0
- 4.65.0
- 4.64.0
- 4.63.0
- 4.62.0
- 4.61.0
- 4.60.0
- 4.59.0
- 4.58.0
- 4.57.0
- 4.55.0
- 4.54.0
- 4.53.0
- 4.52.0
- 4.51.0
- 4.50.0
- 4.49.0
- 4.48.0
- 4.47.0
- 4.46.0
- 4.45.0
- 4.43.0
- 4.42.0
- 4.41.0
- 4.40.0
- 4.39.0
- 4.38.0
- 4.37.0
- 4.36.0
- 4.35.0
- 4.34.0
- 4.33.0
- 4.30.0
- 4.29.0
- 4.28.0
- 4.27.0
- 4.26.0
- 4.25.0
- 4.24.0
- 4.23.0
- 4.22.0
- 4.21.0
- 4.20.0
- 4.19.0
- 4.18.0
- 4.17.0
- 4.15.0
- 4.14.0
- 4.13.0
- 4.12.0
- 4.11.0
- 4.10.0
- 4.9.1
- 4.8.6
- 4.7.5
- 4.6.0
- 4.5.11
- 4.4.0
- 4.3.1
public static final class InferenceParameter.Builder extends GeneratedMessageV3.Builder<InferenceParameter.Builder> implements InferenceParameterOrBuilderThe parameters of inference.
 Protobuf type google.cloud.dialogflow.v2.InferenceParameter
Inheritance
Object > AbstractMessageLite.Builder<MessageType,BuilderType> > AbstractMessage.Builder<BuilderType> > GeneratedMessageV3.Builder > InferenceParameter.BuilderImplements
InferenceParameterOrBuilderStatic Methods
getDescriptor()
public static final Descriptors.Descriptor getDescriptor()| Returns | |
|---|---|
| Type | Description | 
| Descriptor | |
Methods
addRepeatedField(Descriptors.FieldDescriptor field, Object value)
public InferenceParameter.Builder addRepeatedField(Descriptors.FieldDescriptor field, Object value)| Parameters | |
|---|---|
| Name | Description | 
| field | FieldDescriptor | 
| value | Object | 
| Returns | |
|---|---|
| Type | Description | 
| InferenceParameter.Builder | |
build()
public InferenceParameter build()| Returns | |
|---|---|
| Type | Description | 
| InferenceParameter | |
buildPartial()
public InferenceParameter buildPartial()| Returns | |
|---|---|
| Type | Description | 
| InferenceParameter | |
clear()
public InferenceParameter.Builder clear()| Returns | |
|---|---|
| Type | Description | 
| InferenceParameter.Builder | |
clearField(Descriptors.FieldDescriptor field)
public InferenceParameter.Builder clearField(Descriptors.FieldDescriptor field)| Parameter | |
|---|---|
| Name | Description | 
| field | FieldDescriptor | 
| Returns | |
|---|---|
| Type | Description | 
| InferenceParameter.Builder | |
clearMaxOutputTokens()
public InferenceParameter.Builder clearMaxOutputTokens()Optional. Maximum number of the output tokens for the generator.
 optional int32 max_output_tokens = 1 [(.google.api.field_behavior) = OPTIONAL];
| Returns | |
|---|---|
| Type | Description | 
| InferenceParameter.Builder | This builder for chaining. | 
clearOneof(Descriptors.OneofDescriptor oneof)
public InferenceParameter.Builder clearOneof(Descriptors.OneofDescriptor oneof)| Parameter | |
|---|---|
| Name | Description | 
| oneof | OneofDescriptor | 
| Returns | |
|---|---|
| Type | Description | 
| InferenceParameter.Builder | |
clearTemperature()
public InferenceParameter.Builder clearTemperature()Optional. Controls the randomness of LLM predictions. Low temperature = less random. High temperature = more random. If unset (or 0), uses a default value of 0.
 optional double temperature = 2 [(.google.api.field_behavior) = OPTIONAL];
| Returns | |
|---|---|
| Type | Description | 
| InferenceParameter.Builder | This builder for chaining. | 
clearTopK()
public InferenceParameter.Builder clearTopK()Optional. Top-k changes how the model selects tokens for output. A top-k of 1 means the selected token is the most probable among all tokens in the model's vocabulary (also called greedy decoding), while a top-k of 3 means that the next token is selected from among the 3 most probable tokens (using temperature). For each token selection step, the top K tokens with the highest probabilities are sampled. Then tokens are further filtered based on topP with the final token selected using temperature sampling. Specify a lower value for less random responses and a higher value for more random responses. Acceptable value is [1, 40], default to 40.
 optional int32 top_k = 3 [(.google.api.field_behavior) = OPTIONAL];
| Returns | |
|---|---|
| Type | Description | 
| InferenceParameter.Builder | This builder for chaining. | 
clearTopP()
public InferenceParameter.Builder clearTopP()Optional. Top-p changes how the model selects tokens for output. Tokens are selected from most K (see topK parameter) probable to least until the sum of their probabilities equals the top-p value. For example, if tokens A, B, and C have a probability of 0.3, 0.2, and 0.1 and the top-p value is 0.5, then the model will select either A or B as the next token (using temperature) and doesn't consider C. The default top-p value is 0.95. Specify a lower value for less random responses and a higher value for more random responses. Acceptable value is [0.0, 1.0], default to 0.95.
 optional double top_p = 4 [(.google.api.field_behavior) = OPTIONAL];
| Returns | |
|---|---|
| Type | Description | 
| InferenceParameter.Builder | This builder for chaining. | 
clone()
public InferenceParameter.Builder clone()| Returns | |
|---|---|
| Type | Description | 
| InferenceParameter.Builder | |
getDefaultInstanceForType()
public InferenceParameter getDefaultInstanceForType()| Returns | |
|---|---|
| Type | Description | 
| InferenceParameter | |
getDescriptorForType()
public Descriptors.Descriptor getDescriptorForType()| Returns | |
|---|---|
| Type | Description | 
| Descriptor | |
getMaxOutputTokens()
public int getMaxOutputTokens()Optional. Maximum number of the output tokens for the generator.
 optional int32 max_output_tokens = 1 [(.google.api.field_behavior) = OPTIONAL];
| Returns | |
|---|---|
| Type | Description | 
| int | The maxOutputTokens. | 
getTemperature()
public double getTemperature()Optional. Controls the randomness of LLM predictions. Low temperature = less random. High temperature = more random. If unset (or 0), uses a default value of 0.
 optional double temperature = 2 [(.google.api.field_behavior) = OPTIONAL];
| Returns | |
|---|---|
| Type | Description | 
| double | The temperature. | 
getTopK()
public int getTopK()Optional. Top-k changes how the model selects tokens for output. A top-k of 1 means the selected token is the most probable among all tokens in the model's vocabulary (also called greedy decoding), while a top-k of 3 means that the next token is selected from among the 3 most probable tokens (using temperature). For each token selection step, the top K tokens with the highest probabilities are sampled. Then tokens are further filtered based on topP with the final token selected using temperature sampling. Specify a lower value for less random responses and a higher value for more random responses. Acceptable value is [1, 40], default to 40.
 optional int32 top_k = 3 [(.google.api.field_behavior) = OPTIONAL];
| Returns | |
|---|---|
| Type | Description | 
| int | The topK. | 
getTopP()
public double getTopP()Optional. Top-p changes how the model selects tokens for output. Tokens are selected from most K (see topK parameter) probable to least until the sum of their probabilities equals the top-p value. For example, if tokens A, B, and C have a probability of 0.3, 0.2, and 0.1 and the top-p value is 0.5, then the model will select either A or B as the next token (using temperature) and doesn't consider C. The default top-p value is 0.95. Specify a lower value for less random responses and a higher value for more random responses. Acceptable value is [0.0, 1.0], default to 0.95.
 optional double top_p = 4 [(.google.api.field_behavior) = OPTIONAL];
| Returns | |
|---|---|
| Type | Description | 
| double | The topP. | 
hasMaxOutputTokens()
public boolean hasMaxOutputTokens()Optional. Maximum number of the output tokens for the generator.
 optional int32 max_output_tokens = 1 [(.google.api.field_behavior) = OPTIONAL];
| Returns | |
|---|---|
| Type | Description | 
| boolean | Whether the maxOutputTokens field is set. | 
hasTemperature()
public boolean hasTemperature()Optional. Controls the randomness of LLM predictions. Low temperature = less random. High temperature = more random. If unset (or 0), uses a default value of 0.
 optional double temperature = 2 [(.google.api.field_behavior) = OPTIONAL];
| Returns | |
|---|---|
| Type | Description | 
| boolean | Whether the temperature field is set. | 
hasTopK()
public boolean hasTopK()Optional. Top-k changes how the model selects tokens for output. A top-k of 1 means the selected token is the most probable among all tokens in the model's vocabulary (also called greedy decoding), while a top-k of 3 means that the next token is selected from among the 3 most probable tokens (using temperature). For each token selection step, the top K tokens with the highest probabilities are sampled. Then tokens are further filtered based on topP with the final token selected using temperature sampling. Specify a lower value for less random responses and a higher value for more random responses. Acceptable value is [1, 40], default to 40.
 optional int32 top_k = 3 [(.google.api.field_behavior) = OPTIONAL];
| Returns | |
|---|---|
| Type | Description | 
| boolean | Whether the topK field is set. | 
hasTopP()
public boolean hasTopP()Optional. Top-p changes how the model selects tokens for output. Tokens are selected from most K (see topK parameter) probable to least until the sum of their probabilities equals the top-p value. For example, if tokens A, B, and C have a probability of 0.3, 0.2, and 0.1 and the top-p value is 0.5, then the model will select either A or B as the next token (using temperature) and doesn't consider C. The default top-p value is 0.95. Specify a lower value for less random responses and a higher value for more random responses. Acceptable value is [0.0, 1.0], default to 0.95.
 optional double top_p = 4 [(.google.api.field_behavior) = OPTIONAL];
| Returns | |
|---|---|
| Type | Description | 
| boolean | Whether the topP field is set. | 
internalGetFieldAccessorTable()
protected GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable()| Returns | |
|---|---|
| Type | Description | 
| FieldAccessorTable | |
isInitialized()
public final boolean isInitialized()| Returns | |
|---|---|
| Type | Description | 
| boolean | |
mergeFrom(InferenceParameter other)
public InferenceParameter.Builder mergeFrom(InferenceParameter other)| Parameter | |
|---|---|
| Name | Description | 
| other | InferenceParameter | 
| Returns | |
|---|---|
| Type | Description | 
| InferenceParameter.Builder | |
mergeFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)
public InferenceParameter.Builder mergeFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)| Parameters | |
|---|---|
| Name | Description | 
| input | CodedInputStream | 
| extensionRegistry | ExtensionRegistryLite | 
| Returns | |
|---|---|
| Type | Description | 
| InferenceParameter.Builder | |
| Exceptions | |
|---|---|
| Type | Description | 
| IOException | |
mergeFrom(Message other)
public InferenceParameter.Builder mergeFrom(Message other)| Parameter | |
|---|---|
| Name | Description | 
| other | Message | 
| Returns | |
|---|---|
| Type | Description | 
| InferenceParameter.Builder | |
mergeUnknownFields(UnknownFieldSet unknownFields)
public final InferenceParameter.Builder mergeUnknownFields(UnknownFieldSet unknownFields)| Parameter | |
|---|---|
| Name | Description | 
| unknownFields | UnknownFieldSet | 
| Returns | |
|---|---|
| Type | Description | 
| InferenceParameter.Builder | |
setField(Descriptors.FieldDescriptor field, Object value)
public InferenceParameter.Builder setField(Descriptors.FieldDescriptor field, Object value)| Parameters | |
|---|---|
| Name | Description | 
| field | FieldDescriptor | 
| value | Object | 
| Returns | |
|---|---|
| Type | Description | 
| InferenceParameter.Builder | |
setMaxOutputTokens(int value)
public InferenceParameter.Builder setMaxOutputTokens(int value)Optional. Maximum number of the output tokens for the generator.
 optional int32 max_output_tokens = 1 [(.google.api.field_behavior) = OPTIONAL];
| Parameter | |
|---|---|
| Name | Description | 
| value | intThe maxOutputTokens to set. | 
| Returns | |
|---|---|
| Type | Description | 
| InferenceParameter.Builder | This builder for chaining. | 
setRepeatedField(Descriptors.FieldDescriptor field, int index, Object value)
public InferenceParameter.Builder setRepeatedField(Descriptors.FieldDescriptor field, int index, Object value)| Parameters | |
|---|---|
| Name | Description | 
| field | FieldDescriptor | 
| index | int | 
| value | Object | 
| Returns | |
|---|---|
| Type | Description | 
| InferenceParameter.Builder | |
setTemperature(double value)
public InferenceParameter.Builder setTemperature(double value)Optional. Controls the randomness of LLM predictions. Low temperature = less random. High temperature = more random. If unset (or 0), uses a default value of 0.
 optional double temperature = 2 [(.google.api.field_behavior) = OPTIONAL];
| Parameter | |
|---|---|
| Name | Description | 
| value | doubleThe temperature to set. | 
| Returns | |
|---|---|
| Type | Description | 
| InferenceParameter.Builder | This builder for chaining. | 
setTopK(int value)
public InferenceParameter.Builder setTopK(int value)Optional. Top-k changes how the model selects tokens for output. A top-k of 1 means the selected token is the most probable among all tokens in the model's vocabulary (also called greedy decoding), while a top-k of 3 means that the next token is selected from among the 3 most probable tokens (using temperature). For each token selection step, the top K tokens with the highest probabilities are sampled. Then tokens are further filtered based on topP with the final token selected using temperature sampling. Specify a lower value for less random responses and a higher value for more random responses. Acceptable value is [1, 40], default to 40.
 optional int32 top_k = 3 [(.google.api.field_behavior) = OPTIONAL];
| Parameter | |
|---|---|
| Name | Description | 
| value | intThe topK to set. | 
| Returns | |
|---|---|
| Type | Description | 
| InferenceParameter.Builder | This builder for chaining. | 
setTopP(double value)
public InferenceParameter.Builder setTopP(double value)Optional. Top-p changes how the model selects tokens for output. Tokens are selected from most K (see topK parameter) probable to least until the sum of their probabilities equals the top-p value. For example, if tokens A, B, and C have a probability of 0.3, 0.2, and 0.1 and the top-p value is 0.5, then the model will select either A or B as the next token (using temperature) and doesn't consider C. The default top-p value is 0.95. Specify a lower value for less random responses and a higher value for more random responses. Acceptable value is [0.0, 1.0], default to 0.95.
 optional double top_p = 4 [(.google.api.field_behavior) = OPTIONAL];
| Parameter | |
|---|---|
| Name | Description | 
| value | doubleThe topP to set. | 
| Returns | |
|---|---|
| Type | Description | 
| InferenceParameter.Builder | This builder for chaining. | 
setUnknownFields(UnknownFieldSet unknownFields)
public final InferenceParameter.Builder setUnknownFields(UnknownFieldSet unknownFields)| Parameter | |
|---|---|
| Name | Description | 
| unknownFields | UnknownFieldSet | 
| Returns | |
|---|---|
| Type | Description | 
| InferenceParameter.Builder | |