- 0.74.0 (latest)
 - 0.72.0
 - 0.71.0
 - 0.70.0
 - 0.69.0
 - 0.68.0
 - 0.66.0
 - 0.64.0
 - 0.63.0
 - 0.60.0
 - 0.59.0
 - 0.58.0
 - 0.56.0
 - 0.55.0
 - 0.54.0
 - 0.53.0
 - 0.52.0
 - 0.51.0
 - 0.50.0
 - 0.49.0
 - 0.48.0
 - 0.47.0
 - 0.45.0
 - 0.44.0
 - 0.43.0
 - 0.42.0
 - 0.41.0
 - 0.40.0
 - 0.39.0
 - 0.38.0
 - 0.37.0
 - 0.36.0
 - 0.35.0
 - 0.33.0
 - 0.32.0
 - 0.31.0
 - 0.30.0
 - 0.29.0
 - 0.28.0
 - 0.27.0
 - 0.26.0
 - 0.25.0
 - 0.24.0
 - 0.23.0
 - 0.20.0
 - 0.19.0
 - 0.18.0
 - 0.17.0
 - 0.16.0
 - 0.15.0
 - 0.14.0
 - 0.13.0
 - 0.12.0
 - 0.11.0
 - 0.10.0
 - 0.9.0
 - 0.8.0
 - 0.7.0
 - 0.5.0
 - 0.4.0
 - 0.3.0
 - 0.2.0
 - 0.1.0
 
public interface QualityMetricsOrBuilder extends MessageOrBuilderImplements
MessageOrBuilderMethods
getDocNdcg()
public abstract QualityMetrics.TopkMetrics getDocNdcg()Normalized discounted cumulative gain (NDCG) per document, at various top-k cutoff levels.
NDCG measures the ranking quality, giving higher relevance to top results.
Example (top-3): Suppose SampleQuery with three retrieved documents (D1, D2, D3) and binary relevance judgements (1 for relevant, 0 for not relevant):
Retrieved: [D3 (0), D1 (1), D2 (1)] Ideal: [D1 (1), D2 (1), D3 (0)]
Calculate NDCG@3 for each SampleQuery:
- DCG@3: 0/log2(1+1) + 1/log2(2+1) + 1/log2(3+1) = 1.13
 - Ideal DCG@3: 1/log2(1+1) + 1/log2(2+1) + 0/log2(3+1) = 1.63
 - NDCG@3: 1.13/1.63 = 0.693
 
 .google.cloud.discoveryengine.v1alpha.QualityMetrics.TopkMetrics doc_ndcg = 3;
| Returns | |
|---|---|
| Type | Description | 
QualityMetrics.TopkMetrics | 
        The docNdcg.  | 
      
getDocNdcgOrBuilder()
public abstract QualityMetrics.TopkMetricsOrBuilder getDocNdcgOrBuilder()Normalized discounted cumulative gain (NDCG) per document, at various top-k cutoff levels.
NDCG measures the ranking quality, giving higher relevance to top results.
Example (top-3): Suppose SampleQuery with three retrieved documents (D1, D2, D3) and binary relevance judgements (1 for relevant, 0 for not relevant):
Retrieved: [D3 (0), D1 (1), D2 (1)] Ideal: [D1 (1), D2 (1), D3 (0)]
Calculate NDCG@3 for each SampleQuery:
- DCG@3: 0/log2(1+1) + 1/log2(2+1) + 1/log2(3+1) = 1.13
 - Ideal DCG@3: 1/log2(1+1) + 1/log2(2+1) + 0/log2(3+1) = 1.63
 - NDCG@3: 1.13/1.63 = 0.693
 
 .google.cloud.discoveryengine.v1alpha.QualityMetrics.TopkMetrics doc_ndcg = 3;
| Returns | |
|---|---|
| Type | Description | 
QualityMetrics.TopkMetricsOrBuilder | 
        |
getDocPrecision()
public abstract QualityMetrics.TopkMetrics getDocPrecision()Precision per document, at various top-k cutoff levels.
Precision is the fraction of retrieved documents that are relevant.
Example (top-5):
- For a single SampleQuery, If 4 out of 5 retrieved documents in the top-5 are relevant, precision@5 = 4/5 = 0.8
 
 .google.cloud.discoveryengine.v1alpha.QualityMetrics.TopkMetrics doc_precision = 2;
 
| Returns | |
|---|---|
| Type | Description | 
QualityMetrics.TopkMetrics | 
        The docPrecision.  | 
      
getDocPrecisionOrBuilder()
public abstract QualityMetrics.TopkMetricsOrBuilder getDocPrecisionOrBuilder()Precision per document, at various top-k cutoff levels.
Precision is the fraction of retrieved documents that are relevant.
Example (top-5):
- For a single SampleQuery, If 4 out of 5 retrieved documents in the top-5 are relevant, precision@5 = 4/5 = 0.8
 
 .google.cloud.discoveryengine.v1alpha.QualityMetrics.TopkMetrics doc_precision = 2;
 
| Returns | |
|---|---|
| Type | Description | 
QualityMetrics.TopkMetricsOrBuilder | 
        |
getDocRecall()
public abstract QualityMetrics.TopkMetrics getDocRecall()Recall per document, at various top-k cutoff levels.
Recall is the fraction of relevant documents retrieved out of all relevant documents.
Example (top-5):
- For a single SampleQuery, If 3 out of 5 relevant documents are retrieved in the top-5, recall@5 = 3/5 = 0.6
 
 .google.cloud.discoveryengine.v1alpha.QualityMetrics.TopkMetrics doc_recall = 1;
| Returns | |
|---|---|
| Type | Description | 
QualityMetrics.TopkMetrics | 
        The docRecall.  | 
      
getDocRecallOrBuilder()
public abstract QualityMetrics.TopkMetricsOrBuilder getDocRecallOrBuilder()Recall per document, at various top-k cutoff levels.
Recall is the fraction of relevant documents retrieved out of all relevant documents.
Example (top-5):
- For a single SampleQuery, If 3 out of 5 relevant documents are retrieved in the top-5, recall@5 = 3/5 = 0.6
 
 .google.cloud.discoveryengine.v1alpha.QualityMetrics.TopkMetrics doc_recall = 1;
| Returns | |
|---|---|
| Type | Description | 
QualityMetrics.TopkMetricsOrBuilder | 
        |
getPageNdcg()
public abstract QualityMetrics.TopkMetrics getPageNdcg()Normalized discounted cumulative gain (NDCG) per page, at various top-k cutoff levels.
NDCG measures the ranking quality, giving higher relevance to top results.
Example (top-3): Suppose SampleQuery with three retrieved pages (P1, P2, P3) and binary relevance judgements (1 for relevant, 0 for not relevant):
Retrieved: [P3 (0), P1 (1), P2 (1)] Ideal: [P1 (1), P2 (1), P3 (0)]
Calculate NDCG@3 for SampleQuery:
- DCG@3: 0/log2(1+1) + 1/log2(2+1) + 1/log2(3+1) = 1.13
 - Ideal DCG@3: 1/log2(1+1) + 1/log2(2+1) + 0/log2(3+1) = 1.63
 - NDCG@3: 1.13/1.63 = 0.693
 
 .google.cloud.discoveryengine.v1alpha.QualityMetrics.TopkMetrics page_ndcg = 5;
| Returns | |
|---|---|
| Type | Description | 
QualityMetrics.TopkMetrics | 
        The pageNdcg.  | 
      
getPageNdcgOrBuilder()
public abstract QualityMetrics.TopkMetricsOrBuilder getPageNdcgOrBuilder()Normalized discounted cumulative gain (NDCG) per page, at various top-k cutoff levels.
NDCG measures the ranking quality, giving higher relevance to top results.
Example (top-3): Suppose SampleQuery with three retrieved pages (P1, P2, P3) and binary relevance judgements (1 for relevant, 0 for not relevant):
Retrieved: [P3 (0), P1 (1), P2 (1)] Ideal: [P1 (1), P2 (1), P3 (0)]
Calculate NDCG@3 for SampleQuery:
- DCG@3: 0/log2(1+1) + 1/log2(2+1) + 1/log2(3+1) = 1.13
 - Ideal DCG@3: 1/log2(1+1) + 1/log2(2+1) + 0/log2(3+1) = 1.63
 - NDCG@3: 1.13/1.63 = 0.693
 
 .google.cloud.discoveryengine.v1alpha.QualityMetrics.TopkMetrics page_ndcg = 5;
| Returns | |
|---|---|
| Type | Description | 
QualityMetrics.TopkMetricsOrBuilder | 
        |
getPageRecall()
public abstract QualityMetrics.TopkMetrics getPageRecall()Recall per page, at various top-k cutoff levels.
Recall is the fraction of relevant pages retrieved out of all relevant pages.
Example (top-5):
- For a single SampleQuery, if 3 out of 5 relevant pages are retrieved in the top-5, recall@5 = 3/5 = 0.6
 
 .google.cloud.discoveryengine.v1alpha.QualityMetrics.TopkMetrics page_recall = 4;
| Returns | |
|---|---|
| Type | Description | 
QualityMetrics.TopkMetrics | 
        The pageRecall.  | 
      
getPageRecallOrBuilder()
public abstract QualityMetrics.TopkMetricsOrBuilder getPageRecallOrBuilder()Recall per page, at various top-k cutoff levels.
Recall is the fraction of relevant pages retrieved out of all relevant pages.
Example (top-5):
- For a single SampleQuery, if 3 out of 5 relevant pages are retrieved in the top-5, recall@5 = 3/5 = 0.6
 
 .google.cloud.discoveryengine.v1alpha.QualityMetrics.TopkMetrics page_recall = 4;
| Returns | |
|---|---|
| Type | Description | 
QualityMetrics.TopkMetricsOrBuilder | 
        |
hasDocNdcg()
public abstract boolean hasDocNdcg()Normalized discounted cumulative gain (NDCG) per document, at various top-k cutoff levels.
NDCG measures the ranking quality, giving higher relevance to top results.
Example (top-3): Suppose SampleQuery with three retrieved documents (D1, D2, D3) and binary relevance judgements (1 for relevant, 0 for not relevant):
Retrieved: [D3 (0), D1 (1), D2 (1)] Ideal: [D1 (1), D2 (1), D3 (0)]
Calculate NDCG@3 for each SampleQuery:
- DCG@3: 0/log2(1+1) + 1/log2(2+1) + 1/log2(3+1) = 1.13
 - Ideal DCG@3: 1/log2(1+1) + 1/log2(2+1) + 0/log2(3+1) = 1.63
 - NDCG@3: 1.13/1.63 = 0.693
 
 .google.cloud.discoveryengine.v1alpha.QualityMetrics.TopkMetrics doc_ndcg = 3;
| Returns | |
|---|---|
| Type | Description | 
boolean | 
        Whether the docNdcg field is set.  | 
      
hasDocPrecision()
public abstract boolean hasDocPrecision()Precision per document, at various top-k cutoff levels.
Precision is the fraction of retrieved documents that are relevant.
Example (top-5):
- For a single SampleQuery, If 4 out of 5 retrieved documents in the top-5 are relevant, precision@5 = 4/5 = 0.8
 
 .google.cloud.discoveryengine.v1alpha.QualityMetrics.TopkMetrics doc_precision = 2;
 
| Returns | |
|---|---|
| Type | Description | 
boolean | 
        Whether the docPrecision field is set.  | 
      
hasDocRecall()
public abstract boolean hasDocRecall()Recall per document, at various top-k cutoff levels.
Recall is the fraction of relevant documents retrieved out of all relevant documents.
Example (top-5):
- For a single SampleQuery, If 3 out of 5 relevant documents are retrieved in the top-5, recall@5 = 3/5 = 0.6
 
 .google.cloud.discoveryengine.v1alpha.QualityMetrics.TopkMetrics doc_recall = 1;
| Returns | |
|---|---|
| Type | Description | 
boolean | 
        Whether the docRecall field is set.  | 
      
hasPageNdcg()
public abstract boolean hasPageNdcg()Normalized discounted cumulative gain (NDCG) per page, at various top-k cutoff levels.
NDCG measures the ranking quality, giving higher relevance to top results.
Example (top-3): Suppose SampleQuery with three retrieved pages (P1, P2, P3) and binary relevance judgements (1 for relevant, 0 for not relevant):
Retrieved: [P3 (0), P1 (1), P2 (1)] Ideal: [P1 (1), P2 (1), P3 (0)]
Calculate NDCG@3 for SampleQuery:
- DCG@3: 0/log2(1+1) + 1/log2(2+1) + 1/log2(3+1) = 1.13
 - Ideal DCG@3: 1/log2(1+1) + 1/log2(2+1) + 0/log2(3+1) = 1.63
 - NDCG@3: 1.13/1.63 = 0.693
 
 .google.cloud.discoveryengine.v1alpha.QualityMetrics.TopkMetrics page_ndcg = 5;
| Returns | |
|---|---|
| Type | Description | 
boolean | 
        Whether the pageNdcg field is set.  | 
      
hasPageRecall()
public abstract boolean hasPageRecall()Recall per page, at various top-k cutoff levels.
Recall is the fraction of relevant pages retrieved out of all relevant pages.
Example (top-5):
- For a single SampleQuery, if 3 out of 5 relevant pages are retrieved in the top-5, recall@5 = 3/5 = 0.6
 
 .google.cloud.discoveryengine.v1alpha.QualityMetrics.TopkMetrics page_recall = 4;
| Returns | |
|---|---|
| Type | Description | 
boolean | 
        Whether the pageRecall field is set.  |