- 0.74.0 (latest)
- 0.72.0
- 0.71.0
- 0.70.0
- 0.69.0
- 0.68.0
- 0.66.0
- 0.64.0
- 0.63.0
- 0.60.0
- 0.59.0
- 0.58.0
- 0.56.0
- 0.55.0
- 0.54.0
- 0.53.0
- 0.52.0
- 0.51.0
- 0.50.0
- 0.49.0
- 0.48.0
- 0.47.0
- 0.45.0
- 0.44.0
- 0.43.0
- 0.42.0
- 0.41.0
- 0.40.0
- 0.39.0
- 0.38.0
- 0.37.0
- 0.36.0
- 0.35.0
- 0.33.0
- 0.32.0
- 0.31.0
- 0.30.0
- 0.29.0
- 0.28.0
- 0.27.0
- 0.26.0
- 0.25.0
- 0.24.0
- 0.23.0
- 0.20.0
- 0.19.0
- 0.18.0
- 0.17.0
- 0.16.0
- 0.15.0
- 0.14.0
- 0.13.0
- 0.12.0
- 0.11.0
- 0.10.0
- 0.9.0
- 0.8.0
- 0.7.0
- 0.5.0
- 0.4.0
- 0.3.0
- 0.2.0
- 0.1.0
public static final class TrainCustomModelRequest.GcsTrainingInput.Builder extends GeneratedMessageV3.Builder<TrainCustomModelRequest.GcsTrainingInput.Builder> implements TrainCustomModelRequest.GcsTrainingInputOrBuilderCloud Storage training data input.
 Protobuf type 
 google.cloud.discoveryengine.v1.TrainCustomModelRequest.GcsTrainingInput
Inheritance
Object > AbstractMessageLite.Builder<MessageType,BuilderType> > AbstractMessage.Builder<BuilderType> > GeneratedMessageV3.Builder > TrainCustomModelRequest.GcsTrainingInput.BuilderStatic Methods
getDescriptor()
public static final Descriptors.Descriptor getDescriptor()| Returns | |
|---|---|
| Type | Description | 
| Descriptor | |
Methods
addRepeatedField(Descriptors.FieldDescriptor field, Object value)
public TrainCustomModelRequest.GcsTrainingInput.Builder addRepeatedField(Descriptors.FieldDescriptor field, Object value)| Parameters | |
|---|---|
| Name | Description | 
| field | FieldDescriptor | 
| value | Object | 
| Returns | |
|---|---|
| Type | Description | 
| TrainCustomModelRequest.GcsTrainingInput.Builder | |
build()
public TrainCustomModelRequest.GcsTrainingInput build()| Returns | |
|---|---|
| Type | Description | 
| TrainCustomModelRequest.GcsTrainingInput | |
buildPartial()
public TrainCustomModelRequest.GcsTrainingInput buildPartial()| Returns | |
|---|---|
| Type | Description | 
| TrainCustomModelRequest.GcsTrainingInput | |
clear()
public TrainCustomModelRequest.GcsTrainingInput.Builder clear()| Returns | |
|---|---|
| Type | Description | 
| TrainCustomModelRequest.GcsTrainingInput.Builder | |
clearCorpusDataPath()
public TrainCustomModelRequest.GcsTrainingInput.Builder clearCorpusDataPath() The Cloud Storage corpus data which could be associated in train data.
 The data path format is gs://<bucket_to_data>/<jsonl_file_name>.
 A newline delimited jsonl/ndjson file.
 For search-tuning model, each line should have the _id, title
 and text. Example:
 {"_id": "doc1", title: "relevant doc", "text": "relevant text"}
 string corpus_data_path = 1;
| Returns | |
|---|---|
| Type | Description | 
| TrainCustomModelRequest.GcsTrainingInput.Builder | This builder for chaining. | 
clearField(Descriptors.FieldDescriptor field)
public TrainCustomModelRequest.GcsTrainingInput.Builder clearField(Descriptors.FieldDescriptor field)| Parameter | |
|---|---|
| Name | Description | 
| field | FieldDescriptor | 
| Returns | |
|---|---|
| Type | Description | 
| TrainCustomModelRequest.GcsTrainingInput.Builder | |
clearOneof(Descriptors.OneofDescriptor oneof)
public TrainCustomModelRequest.GcsTrainingInput.Builder clearOneof(Descriptors.OneofDescriptor oneof)| Parameter | |
|---|---|
| Name | Description | 
| oneof | OneofDescriptor | 
| Returns | |
|---|---|
| Type | Description | 
| TrainCustomModelRequest.GcsTrainingInput.Builder | |
clearQueryDataPath()
public TrainCustomModelRequest.GcsTrainingInput.Builder clearQueryDataPath() The gcs query data which could be associated in train data.
 The data path format is gs://<bucket_to_data>/<jsonl_file_name>.
 A newline delimited jsonl/ndjson file.
For search-tuning model, each line should have the _id and text. Example: {"_id": "query1", "text": "example query"}
 string query_data_path = 2;
| Returns | |
|---|---|
| Type | Description | 
| TrainCustomModelRequest.GcsTrainingInput.Builder | This builder for chaining. | 
clearTestDataPath()
public TrainCustomModelRequest.GcsTrainingInput.Builder clearTestDataPath()Cloud Storage test data. Same format as train_data_path. If not provided, a random 80/20 train/test split will be performed on train_data_path.
 string test_data_path = 4;
| Returns | |
|---|---|
| Type | Description | 
| TrainCustomModelRequest.GcsTrainingInput.Builder | This builder for chaining. | 
clearTrainDataPath()
public TrainCustomModelRequest.GcsTrainingInput.Builder clearTrainDataPath() Cloud Storage training data path whose format should be
 gs://<bucket_to_data>/<tsv_file_name>. The file should be in tsv
 format. Each line should have the doc_id and query_id and score (number).
 For search-tuning model, it should have the query-id corpus-id
 score as tsv file header. The score should be a number in [0, inf+).
 The larger the number is, the more relevant the pair is. Example:
- query-id\tcorpus-id\tscore
- query1\tdoc1\t1
 string train_data_path = 3;
| Returns | |
|---|---|
| Type | Description | 
| TrainCustomModelRequest.GcsTrainingInput.Builder | This builder for chaining. | 
clone()
public TrainCustomModelRequest.GcsTrainingInput.Builder clone()| Returns | |
|---|---|
| Type | Description | 
| TrainCustomModelRequest.GcsTrainingInput.Builder | |
getCorpusDataPath()
public String getCorpusDataPath() The Cloud Storage corpus data which could be associated in train data.
 The data path format is gs://<bucket_to_data>/<jsonl_file_name>.
 A newline delimited jsonl/ndjson file.
 For search-tuning model, each line should have the _id, title
 and text. Example:
 {"_id": "doc1", title: "relevant doc", "text": "relevant text"}
 string corpus_data_path = 1;
| Returns | |
|---|---|
| Type | Description | 
| String | The corpusDataPath. | 
getCorpusDataPathBytes()
public ByteString getCorpusDataPathBytes() The Cloud Storage corpus data which could be associated in train data.
 The data path format is gs://<bucket_to_data>/<jsonl_file_name>.
 A newline delimited jsonl/ndjson file.
 For search-tuning model, each line should have the _id, title
 and text. Example:
 {"_id": "doc1", title: "relevant doc", "text": "relevant text"}
 string corpus_data_path = 1;
| Returns | |
|---|---|
| Type | Description | 
| ByteString | The bytes for corpusDataPath. | 
getDefaultInstanceForType()
public TrainCustomModelRequest.GcsTrainingInput getDefaultInstanceForType()| Returns | |
|---|---|
| Type | Description | 
| TrainCustomModelRequest.GcsTrainingInput | |
getDescriptorForType()
public Descriptors.Descriptor getDescriptorForType()| Returns | |
|---|---|
| Type | Description | 
| Descriptor | |
getQueryDataPath()
public String getQueryDataPath() The gcs query data which could be associated in train data.
 The data path format is gs://<bucket_to_data>/<jsonl_file_name>.
 A newline delimited jsonl/ndjson file.
For search-tuning model, each line should have the _id and text. Example: {"_id": "query1", "text": "example query"}
 string query_data_path = 2;
| Returns | |
|---|---|
| Type | Description | 
| String | The queryDataPath. | 
getQueryDataPathBytes()
public ByteString getQueryDataPathBytes() The gcs query data which could be associated in train data.
 The data path format is gs://<bucket_to_data>/<jsonl_file_name>.
 A newline delimited jsonl/ndjson file.
For search-tuning model, each line should have the _id and text. Example: {"_id": "query1", "text": "example query"}
 string query_data_path = 2;
| Returns | |
|---|---|
| Type | Description | 
| ByteString | The bytes for queryDataPath. | 
getTestDataPath()
public String getTestDataPath()Cloud Storage test data. Same format as train_data_path. If not provided, a random 80/20 train/test split will be performed on train_data_path.
 string test_data_path = 4;
| Returns | |
|---|---|
| Type | Description | 
| String | The testDataPath. | 
getTestDataPathBytes()
public ByteString getTestDataPathBytes()Cloud Storage test data. Same format as train_data_path. If not provided, a random 80/20 train/test split will be performed on train_data_path.
 string test_data_path = 4;
| Returns | |
|---|---|
| Type | Description | 
| ByteString | The bytes for testDataPath. | 
getTrainDataPath()
public String getTrainDataPath() Cloud Storage training data path whose format should be
 gs://<bucket_to_data>/<tsv_file_name>. The file should be in tsv
 format. Each line should have the doc_id and query_id and score (number).
 For search-tuning model, it should have the query-id corpus-id
 score as tsv file header. The score should be a number in [0, inf+).
 The larger the number is, the more relevant the pair is. Example:
- query-id\tcorpus-id\tscore
- query1\tdoc1\t1
 string train_data_path = 3;
| Returns | |
|---|---|
| Type | Description | 
| String | The trainDataPath. | 
getTrainDataPathBytes()
public ByteString getTrainDataPathBytes() Cloud Storage training data path whose format should be
 gs://<bucket_to_data>/<tsv_file_name>. The file should be in tsv
 format. Each line should have the doc_id and query_id and score (number).
 For search-tuning model, it should have the query-id corpus-id
 score as tsv file header. The score should be a number in [0, inf+).
 The larger the number is, the more relevant the pair is. Example:
- query-id\tcorpus-id\tscore
- query1\tdoc1\t1
 string train_data_path = 3;
| Returns | |
|---|---|
| Type | Description | 
| ByteString | The bytes for trainDataPath. | 
internalGetFieldAccessorTable()
protected GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable()| Returns | |
|---|---|
| Type | Description | 
| FieldAccessorTable | |
isInitialized()
public final boolean isInitialized()| Returns | |
|---|---|
| Type | Description | 
| boolean | |
mergeFrom(TrainCustomModelRequest.GcsTrainingInput other)
public TrainCustomModelRequest.GcsTrainingInput.Builder mergeFrom(TrainCustomModelRequest.GcsTrainingInput other)| Parameter | |
|---|---|
| Name | Description | 
| other | TrainCustomModelRequest.GcsTrainingInput | 
| Returns | |
|---|---|
| Type | Description | 
| TrainCustomModelRequest.GcsTrainingInput.Builder | |
mergeFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)
public TrainCustomModelRequest.GcsTrainingInput.Builder mergeFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)| Parameters | |
|---|---|
| Name | Description | 
| input | CodedInputStream | 
| extensionRegistry | ExtensionRegistryLite | 
| Returns | |
|---|---|
| Type | Description | 
| TrainCustomModelRequest.GcsTrainingInput.Builder | |
| Exceptions | |
|---|---|
| Type | Description | 
| IOException | |
mergeFrom(Message other)
public TrainCustomModelRequest.GcsTrainingInput.Builder mergeFrom(Message other)| Parameter | |
|---|---|
| Name | Description | 
| other | Message | 
| Returns | |
|---|---|
| Type | Description | 
| TrainCustomModelRequest.GcsTrainingInput.Builder | |
mergeUnknownFields(UnknownFieldSet unknownFields)
public final TrainCustomModelRequest.GcsTrainingInput.Builder mergeUnknownFields(UnknownFieldSet unknownFields)| Parameter | |
|---|---|
| Name | Description | 
| unknownFields | UnknownFieldSet | 
| Returns | |
|---|---|
| Type | Description | 
| TrainCustomModelRequest.GcsTrainingInput.Builder | |
setCorpusDataPath(String value)
public TrainCustomModelRequest.GcsTrainingInput.Builder setCorpusDataPath(String value) The Cloud Storage corpus data which could be associated in train data.
 The data path format is gs://<bucket_to_data>/<jsonl_file_name>.
 A newline delimited jsonl/ndjson file.
 For search-tuning model, each line should have the _id, title
 and text. Example:
 {"_id": "doc1", title: "relevant doc", "text": "relevant text"}
 string corpus_data_path = 1;
| Parameter | |
|---|---|
| Name | Description | 
| value | StringThe corpusDataPath to set. | 
| Returns | |
|---|---|
| Type | Description | 
| TrainCustomModelRequest.GcsTrainingInput.Builder | This builder for chaining. | 
setCorpusDataPathBytes(ByteString value)
public TrainCustomModelRequest.GcsTrainingInput.Builder setCorpusDataPathBytes(ByteString value) The Cloud Storage corpus data which could be associated in train data.
 The data path format is gs://<bucket_to_data>/<jsonl_file_name>.
 A newline delimited jsonl/ndjson file.
 For search-tuning model, each line should have the _id, title
 and text. Example:
 {"_id": "doc1", title: "relevant doc", "text": "relevant text"}
 string corpus_data_path = 1;
| Parameter | |
|---|---|
| Name | Description | 
| value | ByteStringThe bytes for corpusDataPath to set. | 
| Returns | |
|---|---|
| Type | Description | 
| TrainCustomModelRequest.GcsTrainingInput.Builder | This builder for chaining. | 
setField(Descriptors.FieldDescriptor field, Object value)
public TrainCustomModelRequest.GcsTrainingInput.Builder setField(Descriptors.FieldDescriptor field, Object value)| Parameters | |
|---|---|
| Name | Description | 
| field | FieldDescriptor | 
| value | Object | 
| Returns | |
|---|---|
| Type | Description | 
| TrainCustomModelRequest.GcsTrainingInput.Builder | |
setQueryDataPath(String value)
public TrainCustomModelRequest.GcsTrainingInput.Builder setQueryDataPath(String value) The gcs query data which could be associated in train data.
 The data path format is gs://<bucket_to_data>/<jsonl_file_name>.
 A newline delimited jsonl/ndjson file.
For search-tuning model, each line should have the _id and text. Example: {"_id": "query1", "text": "example query"}
 string query_data_path = 2;
| Parameter | |
|---|---|
| Name | Description | 
| value | StringThe queryDataPath to set. | 
| Returns | |
|---|---|
| Type | Description | 
| TrainCustomModelRequest.GcsTrainingInput.Builder | This builder for chaining. | 
setQueryDataPathBytes(ByteString value)
public TrainCustomModelRequest.GcsTrainingInput.Builder setQueryDataPathBytes(ByteString value) The gcs query data which could be associated in train data.
 The data path format is gs://<bucket_to_data>/<jsonl_file_name>.
 A newline delimited jsonl/ndjson file.
For search-tuning model, each line should have the _id and text. Example: {"_id": "query1", "text": "example query"}
 string query_data_path = 2;
| Parameter | |
|---|---|
| Name | Description | 
| value | ByteStringThe bytes for queryDataPath to set. | 
| Returns | |
|---|---|
| Type | Description | 
| TrainCustomModelRequest.GcsTrainingInput.Builder | This builder for chaining. | 
setRepeatedField(Descriptors.FieldDescriptor field, int index, Object value)
public TrainCustomModelRequest.GcsTrainingInput.Builder setRepeatedField(Descriptors.FieldDescriptor field, int index, Object value)| Parameters | |
|---|---|
| Name | Description | 
| field | FieldDescriptor | 
| index | int | 
| value | Object | 
| Returns | |
|---|---|
| Type | Description | 
| TrainCustomModelRequest.GcsTrainingInput.Builder | |
setTestDataPath(String value)
public TrainCustomModelRequest.GcsTrainingInput.Builder setTestDataPath(String value)Cloud Storage test data. Same format as train_data_path. If not provided, a random 80/20 train/test split will be performed on train_data_path.
 string test_data_path = 4;
| Parameter | |
|---|---|
| Name | Description | 
| value | StringThe testDataPath to set. | 
| Returns | |
|---|---|
| Type | Description | 
| TrainCustomModelRequest.GcsTrainingInput.Builder | This builder for chaining. | 
setTestDataPathBytes(ByteString value)
public TrainCustomModelRequest.GcsTrainingInput.Builder setTestDataPathBytes(ByteString value)Cloud Storage test data. Same format as train_data_path. If not provided, a random 80/20 train/test split will be performed on train_data_path.
 string test_data_path = 4;
| Parameter | |
|---|---|
| Name | Description | 
| value | ByteStringThe bytes for testDataPath to set. | 
| Returns | |
|---|---|
| Type | Description | 
| TrainCustomModelRequest.GcsTrainingInput.Builder | This builder for chaining. | 
setTrainDataPath(String value)
public TrainCustomModelRequest.GcsTrainingInput.Builder setTrainDataPath(String value) Cloud Storage training data path whose format should be
 gs://<bucket_to_data>/<tsv_file_name>. The file should be in tsv
 format. Each line should have the doc_id and query_id and score (number).
 For search-tuning model, it should have the query-id corpus-id
 score as tsv file header. The score should be a number in [0, inf+).
 The larger the number is, the more relevant the pair is. Example:
- query-id\tcorpus-id\tscore
- query1\tdoc1\t1
 string train_data_path = 3;
| Parameter | |
|---|---|
| Name | Description | 
| value | StringThe trainDataPath to set. | 
| Returns | |
|---|---|
| Type | Description | 
| TrainCustomModelRequest.GcsTrainingInput.Builder | This builder for chaining. | 
setTrainDataPathBytes(ByteString value)
public TrainCustomModelRequest.GcsTrainingInput.Builder setTrainDataPathBytes(ByteString value) Cloud Storage training data path whose format should be
 gs://<bucket_to_data>/<tsv_file_name>. The file should be in tsv
 format. Each line should have the doc_id and query_id and score (number).
 For search-tuning model, it should have the query-id corpus-id
 score as tsv file header. The score should be a number in [0, inf+).
 The larger the number is, the more relevant the pair is. Example:
- query-id\tcorpus-id\tscore
- query1\tdoc1\t1
 string train_data_path = 3;
| Parameter | |
|---|---|
| Name | Description | 
| value | ByteStringThe bytes for trainDataPath to set. | 
| Returns | |
|---|---|
| Type | Description | 
| TrainCustomModelRequest.GcsTrainingInput.Builder | This builder for chaining. | 
setUnknownFields(UnknownFieldSet unknownFields)
public final TrainCustomModelRequest.GcsTrainingInput.Builder setUnknownFields(UnknownFieldSet unknownFields)| Parameter | |
|---|---|
| Name | Description | 
| unknownFields | UnknownFieldSet | 
| Returns | |
|---|---|
| Type | Description | 
| TrainCustomModelRequest.GcsTrainingInput.Builder | |