- 1.122.0 (latest)
- 1.121.0
- 1.120.0
- 1.119.0
- 1.118.0
- 1.117.0
- 1.116.0
- 1.115.0
- 1.114.0
- 1.113.0
- 1.112.0
- 1.111.0
- 1.110.0
- 1.109.0
- 1.108.0
- 1.107.0
- 1.106.0
- 1.105.0
- 1.104.0
- 1.103.0
- 1.102.0
- 1.101.0
- 1.100.0
- 1.99.0
- 1.98.0
- 1.97.0
- 1.96.0
- 1.95.1
- 1.94.0
- 1.93.1
- 1.92.0
- 1.91.0
- 1.90.0
- 1.89.0
- 1.88.0
- 1.87.0
- 1.86.0
- 1.85.0
- 1.84.0
- 1.83.0
- 1.82.0
- 1.81.0
- 1.80.0
- 1.79.0
- 1.78.0
- 1.77.0
- 1.76.0
- 1.75.0
- 1.74.0
- 1.73.0
- 1.72.0
- 1.71.1
- 1.70.0
- 1.69.0
- 1.68.0
- 1.67.1
- 1.66.0
- 1.65.0
- 1.63.0
- 1.62.0
- 1.60.0
- 1.59.0
- 1.58.0
- 1.57.0
- 1.56.0
- 1.55.0
- 1.54.1
- 1.53.0
- 1.52.0
- 1.51.0
- 1.50.0
- 1.49.0
- 1.48.0
- 1.47.0
- 1.46.0
- 1.45.0
- 1.44.0
- 1.43.0
- 1.39.0
- 1.38.1
- 1.37.0
- 1.36.4
- 1.35.0
- 1.34.0
- 1.33.1
- 1.32.0
- 1.31.1
- 1.30.1
- 1.29.0
- 1.28.1
- 1.27.1
- 1.26.1
- 1.25.0
- 1.24.1
- 1.23.0
- 1.22.1
- 1.21.0
- 1.20.0
- 1.19.1
- 1.18.3
- 1.17.1
- 1.16.1
- 1.15.1
- 1.14.0
- 1.13.1
- 1.12.1
- 1.11.0
- 1.10.0
- 1.9.0
- 1.8.1
- 1.7.1
- 1.6.2
- 1.5.0
- 1.4.3
- 1.3.0
- 1.2.0
- 1.1.1
- 1.0.1
- 0.9.0
- 0.8.0
- 0.7.1
- 0.6.0
- 0.5.1
- 0.4.0
- 0.3.1
JobServiceAsyncClient(*, credentials: google.auth.credentials.Credentials = None, transport: Union[str, google.cloud.aiplatform_v1beta1.services.job_service.transports.base.JobServiceTransport] = 'grpc_asyncio', client_options: <module 'google.api_core.client_options' from '/workspace/python-aiplatform/.nox/docfx/lib/python3.8/site-packages/google/api_core/client_options.py'> = None, client_info: google.api_core.gapic_v1.client_info.ClientInfo = <google.api_core.gapic_v1.client_info.ClientInfo object>)A service for creating and managing Vertex AI's jobs.
Inheritance
builtins.object > JobServiceAsyncClientProperties
transport
Returns the transport used by the client instance.
| Type | Description | 
| JobServiceTransport | The transport used by the client instance. | 
Methods
JobServiceAsyncClient
JobServiceAsyncClient(*, credentials: google.auth.credentials.Credentials = None, transport: Union[str, google.cloud.aiplatform_v1beta1.services.job_service.transports.base.JobServiceTransport] = 'grpc_asyncio', client_options: <module 'google.api_core.client_options' from '/workspace/python-aiplatform/.nox/docfx/lib/python3.8/site-packages/google/api_core/client_options.py'> = None, client_info: google.api_core.gapic_v1.client_info.ClientInfo = <google.api_core.gapic_v1.client_info.ClientInfo object>)Instantiates the job service client.
| Name | Description | 
| credentials | Optional[google.auth.credentials.Credentials]The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. | 
| transport | Union[str, `.JobServiceTransport`]The transport to use. If set to None, a transport is chosen automatically. | 
| client_options | ClientOptionsCustom options for the client. It won't take effect if a  | 
| Type | Description | 
| google.auth.exceptions.MutualTlsChannelError | If mutual TLS transport creation failed for any reason. | 
batch_prediction_job_path
batch_prediction_job_path(project: str, location: str, batch_prediction_job: str)Returns a fully-qualified batch_prediction_job string.
cancel_batch_prediction_job
cancel_batch_prediction_job(request: Optional[google.cloud.aiplatform_v1beta1.types.job_service.CancelBatchPredictionJobRequest] = None, *, name: Optional[str] = None, retry: google.api_core.retry.Retry = <object object>, timeout: Optional[float] = None, metadata: Sequence[Tuple[str, str]] = ())Cancels a BatchPredictionJob.
Starts asynchronous cancellation on the BatchPredictionJob. The
server makes the best effort to cancel the job, but success is
not guaranteed. Clients can use
xref_JobService.GetBatchPredictionJob
or other methods to check whether the cancellation succeeded or
whether the job completed despite cancellation. On a successful
cancellation, the BatchPredictionJob is not deleted;instead its
xref_BatchPredictionJob.state
is set to CANCELLED. Any files already outputted by the job
are not deleted.
| Name | Description | 
| request | CancelBatchPredictionJobRequestThe request object. Request message for JobService.CancelBatchPredictionJob. | 
| name | `str`Required. The name of the BatchPredictionJob to cancel. Format:  | 
| retry | google.api_core.retry.RetryDesignation of what errors, if any, should be retried. | 
| timeout | floatThe timeout for this request. | 
| metadata | Sequence[Tuple[str, str]]Strings which should be sent along with the request as metadata. | 
cancel_custom_job
cancel_custom_job(request: Optional[google.cloud.aiplatform_v1beta1.types.job_service.CancelCustomJobRequest] = None, *, name: Optional[str] = None, retry: google.api_core.retry.Retry = <object object>, timeout: Optional[float] = None, metadata: Sequence[Tuple[str, str]] = ())Cancels a CustomJob. Starts asynchronous cancellation on the
CustomJob. The server makes a best effort to cancel the job, but
success is not guaranteed. Clients can use
xref_JobService.GetCustomJob
or other methods to check whether the cancellation succeeded or
whether the job completed despite cancellation. On successful
cancellation, the CustomJob is not deleted; instead it becomes a
job with a
xref_CustomJob.error
value with a google.rpc.Status.code][google.rpc.Status.code] of
1, corresponding to Code.CANCELLED, and
xref_CustomJob.state
is set to CANCELLED.
| Name | Description | 
| request | CancelCustomJobRequestThe request object. Request message for JobService.CancelCustomJob. | 
| name | `str`Required. The name of the CustomJob to cancel. Format:  | 
| retry | google.api_core.retry.RetryDesignation of what errors, if any, should be retried. | 
| timeout | floatThe timeout for this request. | 
| metadata | Sequence[Tuple[str, str]]Strings which should be sent along with the request as metadata. | 
cancel_data_labeling_job
cancel_data_labeling_job(request: Optional[google.cloud.aiplatform_v1beta1.types.job_service.CancelDataLabelingJobRequest] = None, *, name: Optional[str] = None, retry: google.api_core.retry.Retry = <object object>, timeout: Optional[float] = None, metadata: Sequence[Tuple[str, str]] = ())Cancels a DataLabelingJob. Success of cancellation is not guaranteed.
| Name | Description | 
| request | CancelDataLabelingJobRequestThe request object. Request message for JobService.CancelDataLabelingJob. | 
| name | `str`Required. The name of the DataLabelingJob. Format:  | 
| retry | google.api_core.retry.RetryDesignation of what errors, if any, should be retried. | 
| timeout | floatThe timeout for this request. | 
| metadata | Sequence[Tuple[str, str]]Strings which should be sent along with the request as metadata. | 
cancel_hyperparameter_tuning_job
cancel_hyperparameter_tuning_job(request: Optional[google.cloud.aiplatform_v1beta1.types.job_service.CancelHyperparameterTuningJobRequest] = None, *, name: Optional[str] = None, retry: google.api_core.retry.Retry = <object object>, timeout: Optional[float] = None, metadata: Sequence[Tuple[str, str]] = ())Cancels a HyperparameterTuningJob. Starts asynchronous
cancellation on the HyperparameterTuningJob. The server makes a
best effort to cancel the job, but success is not guaranteed.
Clients can use
xref_JobService.GetHyperparameterTuningJob
or other methods to check whether the cancellation succeeded or
whether the job completed despite cancellation. On successful
cancellation, the HyperparameterTuningJob is not deleted;
instead it becomes a job with a
xref_HyperparameterTuningJob.error
value with a google.rpc.Status.code][google.rpc.Status.code] of
1, corresponding to Code.CANCELLED, and
xref_HyperparameterTuningJob.state
is set to CANCELLED.
| Name | Description | 
| request | CancelHyperparameterTuningJobRequestThe request object. Request message for JobService.CancelHyperparameterTuningJob. | 
| name | `str`Required. The name of the HyperparameterTuningJob to cancel. Format:  | 
| retry | google.api_core.retry.RetryDesignation of what errors, if any, should be retried. | 
| timeout | floatThe timeout for this request. | 
| metadata | Sequence[Tuple[str, str]]Strings which should be sent along with the request as metadata. | 
common_billing_account_path
common_billing_account_path(billing_account: str)Returns a fully-qualified billing_account string.
common_folder_path
common_folder_path(folder: str)Returns a fully-qualified folder string.
common_location_path
common_location_path(project: str, location: str)Returns a fully-qualified location string.
common_organization_path
common_organization_path(organization: str)Returns a fully-qualified organization string.
common_project_path
common_project_path(project: str)Returns a fully-qualified project string.
create_batch_prediction_job
create_batch_prediction_job(request: Optional[google.cloud.aiplatform_v1beta1.types.job_service.CreateBatchPredictionJobRequest] = None, *, parent: Optional[str] = None, batch_prediction_job: Optional[google.cloud.aiplatform_v1beta1.types.batch_prediction_job.BatchPredictionJob] = None, retry: google.api_core.retry.Retry = <object object>, timeout: Optional[float] = None, metadata: Sequence[Tuple[str, str]] = ())Creates a BatchPredictionJob. A BatchPredictionJob once created will right away be attempted to start.
| Name | Description | 
| request | CreateBatchPredictionJobRequestThe request object. Request message for JobService.CreateBatchPredictionJob. | 
| parent | `str`Required. The resource name of the Location to create the BatchPredictionJob in. Format:  | 
| batch_prediction_job | BatchPredictionJobRequired. The BatchPredictionJob to create. This corresponds to the  | 
| retry | google.api_core.retry.RetryDesignation of what errors, if any, should be retried. | 
| timeout | floatThe timeout for this request. | 
| metadata | Sequence[Tuple[str, str]]Strings which should be sent along with the request as metadata. | 
| Type | Description | 
| google.cloud.aiplatform_v1beta1.types.BatchPredictionJob | A job that uses a Model to produce predictions on multiple [input instances][google.cloud.aiplatform.v1beta1.BatchPredictionJob.input_config]. If predictions for significant portion of the instances fail, the job may finish without attempting predictions for all remaining instances. | 
create_custom_job
create_custom_job(request: Optional[google.cloud.aiplatform_v1beta1.types.job_service.CreateCustomJobRequest] = None, *, parent: Optional[str] = None, custom_job: Optional[google.cloud.aiplatform_v1beta1.types.custom_job.CustomJob] = None, retry: google.api_core.retry.Retry = <object object>, timeout: Optional[float] = None, metadata: Sequence[Tuple[str, str]] = ())Creates a CustomJob. A created CustomJob right away will be attempted to be run.
| Name | Description | 
| request | CreateCustomJobRequestThe request object. Request message for JobService.CreateCustomJob. | 
| parent | `str`Required. The resource name of the Location to create the CustomJob in. Format:  | 
| custom_job | CustomJobRequired. The CustomJob to create. This corresponds to the  | 
| retry | google.api_core.retry.RetryDesignation of what errors, if any, should be retried. | 
| timeout | floatThe timeout for this request. | 
| metadata | Sequence[Tuple[str, str]]Strings which should be sent along with the request as metadata. | 
| Type | Description | 
| google.cloud.aiplatform_v1beta1.types.CustomJob | Represents a job that runs custom workloads such as a Docker container or a Python package. A CustomJob can have multiple worker pools and each worker pool can have its own machine and input spec. A CustomJob will be cleaned up once the job enters terminal state (failed or succeeded). | 
create_data_labeling_job
create_data_labeling_job(request: Optional[google.cloud.aiplatform_v1beta1.types.job_service.CreateDataLabelingJobRequest] = None, *, parent: Optional[str] = None, data_labeling_job: Optional[google.cloud.aiplatform_v1beta1.types.data_labeling_job.DataLabelingJob] = None, retry: google.api_core.retry.Retry = <object object>, timeout: Optional[float] = None, metadata: Sequence[Tuple[str, str]] = ())Creates a DataLabelingJob.
| Name | Description | 
| request | CreateDataLabelingJobRequestThe request object. Request message for JobService.CreateDataLabelingJob. | 
| parent | `str`Required. The parent of the DataLabelingJob. Format:  | 
| data_labeling_job | DataLabelingJobRequired. The DataLabelingJob to create. This corresponds to the  | 
| retry | google.api_core.retry.RetryDesignation of what errors, if any, should be retried. | 
| timeout | floatThe timeout for this request. | 
| metadata | Sequence[Tuple[str, str]]Strings which should be sent along with the request as metadata. | 
| Type | Description | 
| google.cloud.aiplatform_v1beta1.types.DataLabelingJob | DataLabelingJob is used to trigger a human labeling job on unlabeled data from the following Dataset: | 
create_hyperparameter_tuning_job
create_hyperparameter_tuning_job(request: Optional[google.cloud.aiplatform_v1beta1.types.job_service.CreateHyperparameterTuningJobRequest] = None, *, parent: Optional[str] = None, hyperparameter_tuning_job: Optional[google.cloud.aiplatform_v1beta1.types.hyperparameter_tuning_job.HyperparameterTuningJob] = None, retry: google.api_core.retry.Retry = <object object>, timeout: Optional[float] = None, metadata: Sequence[Tuple[str, str]] = ())Creates a HyperparameterTuningJob
| Name | Description | 
| request | CreateHyperparameterTuningJobRequestThe request object. Request message for JobService.CreateHyperparameterTuningJob. | 
| parent | `str`Required. The resource name of the Location to create the HyperparameterTuningJob in. Format:  | 
| hyperparameter_tuning_job | HyperparameterTuningJobRequired. The HyperparameterTuningJob to create. This corresponds to the  | 
| retry | google.api_core.retry.RetryDesignation of what errors, if any, should be retried. | 
| timeout | floatThe timeout for this request. | 
| metadata | Sequence[Tuple[str, str]]Strings which should be sent along with the request as metadata. | 
| Type | Description | 
| google.cloud.aiplatform_v1beta1.types.HyperparameterTuningJob | Represents a HyperparameterTuningJob. A HyperparameterTuningJob has a Study specification and multiple CustomJobs with identical CustomJob specification. | 
create_model_deployment_monitoring_job
create_model_deployment_monitoring_job(request: Optional[google.cloud.aiplatform_v1beta1.types.job_service.CreateModelDeploymentMonitoringJobRequest] = None, *, parent: Optional[str] = None, model_deployment_monitoring_job: Optional[google.cloud.aiplatform_v1beta1.types.model_deployment_monitoring_job.ModelDeploymentMonitoringJob] = None, retry: google.api_core.retry.Retry = <object object>, timeout: Optional[float] = None, metadata: Sequence[Tuple[str, str]] = ())Creates a ModelDeploymentMonitoringJob. It will run periodically on a configured interval.
| Name | Description | 
| request | CreateModelDeploymentMonitoringJobRequestThe request object. Request message for JobService.CreateModelDeploymentMonitoringJob. | 
| parent | `str`Required. The parent of the ModelDeploymentMonitoringJob. Format:  | 
| model_deployment_monitoring_job | ModelDeploymentMonitoringJobRequired. The ModelDeploymentMonitoringJob to create This corresponds to the  | 
| retry | google.api_core.retry.RetryDesignation of what errors, if any, should be retried. | 
| timeout | floatThe timeout for this request. | 
| metadata | Sequence[Tuple[str, str]]Strings which should be sent along with the request as metadata. | 
| Type | Description | 
| google.cloud.aiplatform_v1beta1.types.ModelDeploymentMonitoringJob | Represents a job that runs periodically to monitor the deployed models in an endpoint. It will analyze the logged training & prediction data to detect any abnormal behaviors. | 
custom_job_path
custom_job_path(project: str, location: str, custom_job: str)Returns a fully-qualified custom_job string.
data_labeling_job_path
data_labeling_job_path(project: str, location: str, data_labeling_job: str)Returns a fully-qualified data_labeling_job string.
dataset_path
dataset_path(project: str, location: str, dataset: str)Returns a fully-qualified dataset string.
delete_batch_prediction_job
delete_batch_prediction_job(request: Optional[google.cloud.aiplatform_v1beta1.types.job_service.DeleteBatchPredictionJobRequest] = None, *, name: Optional[str] = None, retry: google.api_core.retry.Retry = <object object>, timeout: Optional[float] = None, metadata: Sequence[Tuple[str, str]] = ())Deletes a BatchPredictionJob. Can only be called on jobs that already finished.
| Name | Description | 
| request | DeleteBatchPredictionJobRequestThe request object. Request message for JobService.DeleteBatchPredictionJob. | 
| name | `str`Required. The name of the BatchPredictionJob resource to be deleted. Format:  | 
| retry | google.api_core.retry.RetryDesignation of what errors, if any, should be retried. | 
| timeout | floatThe timeout for this request. | 
| metadata | Sequence[Tuple[str, str]]Strings which should be sent along with the request as metadata. | 
| Type | Description | 
| google.api_core.operation_async.AsyncOperation | An object representing a long-running operation. The result type for the operation will be `google.protobuf.empty_pb2.Empty` A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance: service Foo { rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty); } The JSON representation for Empty is empty JSON object {}. | 
delete_custom_job
delete_custom_job(request: Optional[google.cloud.aiplatform_v1beta1.types.job_service.DeleteCustomJobRequest] = None, *, name: Optional[str] = None, retry: google.api_core.retry.Retry = <object object>, timeout: Optional[float] = None, metadata: Sequence[Tuple[str, str]] = ())Deletes a CustomJob.
| Name | Description | 
| request | DeleteCustomJobRequestThe request object. Request message for JobService.DeleteCustomJob. | 
| name | `str`Required. The name of the CustomJob resource to be deleted. Format:  | 
| retry | google.api_core.retry.RetryDesignation of what errors, if any, should be retried. | 
| timeout | floatThe timeout for this request. | 
| metadata | Sequence[Tuple[str, str]]Strings which should be sent along with the request as metadata. | 
| Type | Description | 
| google.api_core.operation_async.AsyncOperation | An object representing a long-running operation. The result type for the operation will be `google.protobuf.empty_pb2.Empty` A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance: service Foo { rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty); } The JSON representation for Empty is empty JSON object {}. | 
delete_data_labeling_job
delete_data_labeling_job(request: Optional[google.cloud.aiplatform_v1beta1.types.job_service.DeleteDataLabelingJobRequest] = None, *, name: Optional[str] = None, retry: google.api_core.retry.Retry = <object object>, timeout: Optional[float] = None, metadata: Sequence[Tuple[str, str]] = ())Deletes a DataLabelingJob.
| Name | Description | 
| request | DeleteDataLabelingJobRequestThe request object. Request message for JobService.DeleteDataLabelingJob. | 
| name | `str`Required. The name of the DataLabelingJob to be deleted. Format:  | 
| retry | google.api_core.retry.RetryDesignation of what errors, if any, should be retried. | 
| timeout | floatThe timeout for this request. | 
| metadata | Sequence[Tuple[str, str]]Strings which should be sent along with the request as metadata. | 
| Type | Description | 
| google.api_core.operation_async.AsyncOperation | An object representing a long-running operation. The result type for the operation will be `google.protobuf.empty_pb2.Empty` A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance: service Foo { rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty); } The JSON representation for Empty is empty JSON object {}. | 
delete_hyperparameter_tuning_job
delete_hyperparameter_tuning_job(request: Optional[google.cloud.aiplatform_v1beta1.types.job_service.DeleteHyperparameterTuningJobRequest] = None, *, name: Optional[str] = None, retry: google.api_core.retry.Retry = <object object>, timeout: Optional[float] = None, metadata: Sequence[Tuple[str, str]] = ())Deletes a HyperparameterTuningJob.
| Name | Description | 
| request | DeleteHyperparameterTuningJobRequestThe request object. Request message for JobService.DeleteHyperparameterTuningJob. | 
| name | `str`Required. The name of the HyperparameterTuningJob resource to be deleted. Format:  | 
| retry | google.api_core.retry.RetryDesignation of what errors, if any, should be retried. | 
| timeout | floatThe timeout for this request. | 
| metadata | Sequence[Tuple[str, str]]Strings which should be sent along with the request as metadata. | 
| Type | Description | 
| google.api_core.operation_async.AsyncOperation | An object representing a long-running operation. The result type for the operation will be `google.protobuf.empty_pb2.Empty` A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance: service Foo { rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty); } The JSON representation for Empty is empty JSON object {}. | 
delete_model_deployment_monitoring_job
delete_model_deployment_monitoring_job(request: Optional[google.cloud.aiplatform_v1beta1.types.job_service.DeleteModelDeploymentMonitoringJobRequest] = None, *, name: Optional[str] = None, retry: google.api_core.retry.Retry = <object object>, timeout: Optional[float] = None, metadata: Sequence[Tuple[str, str]] = ())Deletes a ModelDeploymentMonitoringJob.
| Name | Description | 
| request | DeleteModelDeploymentMonitoringJobRequestThe request object. Request message for JobService.DeleteModelDeploymentMonitoringJob. | 
| name | `str`Required. The resource name of the model monitoring job to delete. Format:  | 
| retry | google.api_core.retry.RetryDesignation of what errors, if any, should be retried. | 
| timeout | floatThe timeout for this request. | 
| metadata | Sequence[Tuple[str, str]]Strings which should be sent along with the request as metadata. | 
| Type | Description | 
| google.api_core.operation_async.AsyncOperation | An object representing a long-running operation. The result type for the operation will be `google.protobuf.empty_pb2.Empty` A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance: service Foo { rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty); } The JSON representation for Empty is empty JSON object {}. | 
endpoint_path
endpoint_path(project: str, location: str, endpoint: str)Returns a fully-qualified endpoint string.
from_service_account_file
from_service_account_file(filename: str, *args, **kwargs)Creates an instance of this client using the provided credentials file.
| Name | Description | 
| filename | strThe path to the service account private key json file. | 
| Type | Description | 
| JobServiceAsyncClient | The constructed client. | 
from_service_account_info
from_service_account_info(info: dict, *args, **kwargs)Creates an instance of this client using the provided credentials info.
| Name | Description | 
| info | dictThe service account private key info. | 
| Type | Description | 
| JobServiceAsyncClient | The constructed client. | 
from_service_account_json
from_service_account_json(filename: str, *args, **kwargs)Creates an instance of this client using the provided credentials file.
| Name | Description | 
| filename | strThe path to the service account private key json file. | 
| Type | Description | 
| JobServiceAsyncClient | The constructed client. | 
get_batch_prediction_job
get_batch_prediction_job(request: Optional[google.cloud.aiplatform_v1beta1.types.job_service.GetBatchPredictionJobRequest] = None, *, name: Optional[str] = None, retry: google.api_core.retry.Retry = <object object>, timeout: Optional[float] = None, metadata: Sequence[Tuple[str, str]] = ())Gets a BatchPredictionJob
| Name | Description | 
| request | GetBatchPredictionJobRequestThe request object. Request message for JobService.GetBatchPredictionJob. | 
| name | `str`Required. The name of the BatchPredictionJob resource. Format:  | 
| retry | google.api_core.retry.RetryDesignation of what errors, if any, should be retried. | 
| timeout | floatThe timeout for this request. | 
| metadata | Sequence[Tuple[str, str]]Strings which should be sent along with the request as metadata. | 
| Type | Description | 
| google.cloud.aiplatform_v1beta1.types.BatchPredictionJob | A job that uses a Model to produce predictions on multiple [input instances][google.cloud.aiplatform.v1beta1.BatchPredictionJob.input_config]. If predictions for significant portion of the instances fail, the job may finish without attempting predictions for all remaining instances. | 
get_custom_job
get_custom_job(request: Optional[google.cloud.aiplatform_v1beta1.types.job_service.GetCustomJobRequest] = None, *, name: Optional[str] = None, retry: google.api_core.retry.Retry = <object object>, timeout: Optional[float] = None, metadata: Sequence[Tuple[str, str]] = ())Gets a CustomJob.
| Name | Description | 
| request | GetCustomJobRequestThe request object. Request message for JobService.GetCustomJob. | 
| name | `str`Required. The name of the CustomJob resource. Format:  | 
| retry | google.api_core.retry.RetryDesignation of what errors, if any, should be retried. | 
| timeout | floatThe timeout for this request. | 
| metadata | Sequence[Tuple[str, str]]Strings which should be sent along with the request as metadata. | 
| Type | Description | 
| google.cloud.aiplatform_v1beta1.types.CustomJob | Represents a job that runs custom workloads such as a Docker container or a Python package. A CustomJob can have multiple worker pools and each worker pool can have its own machine and input spec. A CustomJob will be cleaned up once the job enters terminal state (failed or succeeded). | 
get_data_labeling_job
get_data_labeling_job(request: Optional[google.cloud.aiplatform_v1beta1.types.job_service.GetDataLabelingJobRequest] = None, *, name: Optional[str] = None, retry: google.api_core.retry.Retry = <object object>, timeout: Optional[float] = None, metadata: Sequence[Tuple[str, str]] = ())Gets a DataLabelingJob.
| Name | Description | 
| request | GetDataLabelingJobRequestThe request object. Request message for JobService.GetDataLabelingJob. | 
| name | `str`Required. The name of the DataLabelingJob. Format:  | 
| retry | google.api_core.retry.RetryDesignation of what errors, if any, should be retried. | 
| timeout | floatThe timeout for this request. | 
| metadata | Sequence[Tuple[str, str]]Strings which should be sent along with the request as metadata. | 
| Type | Description | 
| google.cloud.aiplatform_v1beta1.types.DataLabelingJob | DataLabelingJob is used to trigger a human labeling job on unlabeled data from the following Dataset: | 
get_hyperparameter_tuning_job
get_hyperparameter_tuning_job(request: Optional[google.cloud.aiplatform_v1beta1.types.job_service.GetHyperparameterTuningJobRequest] = None, *, name: Optional[str] = None, retry: google.api_core.retry.Retry = <object object>, timeout: Optional[float] = None, metadata: Sequence[Tuple[str, str]] = ())Gets a HyperparameterTuningJob
| Name | Description | 
| request | GetHyperparameterTuningJobRequestThe request object. Request message for JobService.GetHyperparameterTuningJob. | 
| name | `str`Required. The name of the HyperparameterTuningJob resource. Format:  | 
| retry | google.api_core.retry.RetryDesignation of what errors, if any, should be retried. | 
| timeout | floatThe timeout for this request. | 
| metadata | Sequence[Tuple[str, str]]Strings which should be sent along with the request as metadata. | 
| Type | Description | 
| google.cloud.aiplatform_v1beta1.types.HyperparameterTuningJob | Represents a HyperparameterTuningJob. A HyperparameterTuningJob has a Study specification and multiple CustomJobs with identical CustomJob specification. | 
get_model_deployment_monitoring_job
get_model_deployment_monitoring_job(request: Optional[google.cloud.aiplatform_v1beta1.types.job_service.GetModelDeploymentMonitoringJobRequest] = None, *, name: Optional[str] = None, retry: google.api_core.retry.Retry = <object object>, timeout: Optional[float] = None, metadata: Sequence[Tuple[str, str]] = ())Gets a ModelDeploymentMonitoringJob.
| Name | Description | 
| request | GetModelDeploymentMonitoringJobRequestThe request object. Request message for JobService.GetModelDeploymentMonitoringJob. | 
| name | `str`Required. The resource name of the ModelDeploymentMonitoringJob. Format:  | 
| retry | google.api_core.retry.RetryDesignation of what errors, if any, should be retried. | 
| timeout | floatThe timeout for this request. | 
| metadata | Sequence[Tuple[str, str]]Strings which should be sent along with the request as metadata. | 
| Type | Description | 
| google.cloud.aiplatform_v1beta1.types.ModelDeploymentMonitoringJob | Represents a job that runs periodically to monitor the deployed models in an endpoint. It will analyze the logged training & prediction data to detect any abnormal behaviors. | 
get_transport_class
get_transport_class()Returns an appropriate transport class.
hyperparameter_tuning_job_path
hyperparameter_tuning_job_path(
    project: str, location: str, hyperparameter_tuning_job: str
)Returns a fully-qualified hyperparameter_tuning_job string.
list_batch_prediction_jobs
list_batch_prediction_jobs(request: Optional[google.cloud.aiplatform_v1beta1.types.job_service.ListBatchPredictionJobsRequest] = None, *, parent: Optional[str] = None, retry: google.api_core.retry.Retry = <object object>, timeout: Optional[float] = None, metadata: Sequence[Tuple[str, str]] = ())Lists BatchPredictionJobs in a Location.
| Name | Description | 
| request | ListBatchPredictionJobsRequestThe request object. Request message for JobService.ListBatchPredictionJobs. | 
| parent | `str`Required. The resource name of the Location to list the BatchPredictionJobs from. Format:  | 
| retry | google.api_core.retry.RetryDesignation of what errors, if any, should be retried. | 
| timeout | floatThe timeout for this request. | 
| metadata | Sequence[Tuple[str, str]]Strings which should be sent along with the request as metadata. | 
| Type | Description | 
| google.cloud.aiplatform_v1beta1.services.job_service.pagers.ListBatchPredictionJobsAsyncPager | Response message for JobService.ListBatchPredictionJobs Iterating over this object will yield results and resolve additional pages automatically. | 
list_custom_jobs
list_custom_jobs(request: Optional[google.cloud.aiplatform_v1beta1.types.job_service.ListCustomJobsRequest] = None, *, parent: Optional[str] = None, retry: google.api_core.retry.Retry = <object object>, timeout: Optional[float] = None, metadata: Sequence[Tuple[str, str]] = ())Lists CustomJobs in a Location.
| Name | Description | 
| request | ListCustomJobsRequestThe request object. Request message for JobService.ListCustomJobs. | 
| parent | `str`Required. The resource name of the Location to list the CustomJobs from. Format:  | 
| retry | google.api_core.retry.RetryDesignation of what errors, if any, should be retried. | 
| timeout | floatThe timeout for this request. | 
| metadata | Sequence[Tuple[str, str]]Strings which should be sent along with the request as metadata. | 
| Type | Description | 
| google.cloud.aiplatform_v1beta1.services.job_service.pagers.ListCustomJobsAsyncPager | Response message for JobService.ListCustomJobs Iterating over this object will yield results and resolve additional pages automatically. | 
list_data_labeling_jobs
list_data_labeling_jobs(request: Optional[google.cloud.aiplatform_v1beta1.types.job_service.ListDataLabelingJobsRequest] = None, *, parent: Optional[str] = None, retry: google.api_core.retry.Retry = <object object>, timeout: Optional[float] = None, metadata: Sequence[Tuple[str, str]] = ())Lists DataLabelingJobs in a Location.
| Name | Description | 
| request | ListDataLabelingJobsRequestThe request object. Request message for JobService.ListDataLabelingJobs. | 
| parent | `str`Required. The parent of the DataLabelingJob. Format:  | 
| retry | google.api_core.retry.RetryDesignation of what errors, if any, should be retried. | 
| timeout | floatThe timeout for this request. | 
| metadata | Sequence[Tuple[str, str]]Strings which should be sent along with the request as metadata. | 
| Type | Description | 
| google.cloud.aiplatform_v1beta1.services.job_service.pagers.ListDataLabelingJobsAsyncPager | Response message for JobService.ListDataLabelingJobs. Iterating over this object will yield results and resolve additional pages automatically. | 
list_hyperparameter_tuning_jobs
list_hyperparameter_tuning_jobs(request: Optional[google.cloud.aiplatform_v1beta1.types.job_service.ListHyperparameterTuningJobsRequest] = None, *, parent: Optional[str] = None, retry: google.api_core.retry.Retry = <object object>, timeout: Optional[float] = None, metadata: Sequence[Tuple[str, str]] = ())Lists HyperparameterTuningJobs in a Location.
| Name | Description | 
| request | ListHyperparameterTuningJobsRequestThe request object. Request message for JobService.ListHyperparameterTuningJobs. | 
| parent | `str`Required. The resource name of the Location to list the HyperparameterTuningJobs from. Format:  | 
| retry | google.api_core.retry.RetryDesignation of what errors, if any, should be retried. | 
| timeout | floatThe timeout for this request. | 
| metadata | Sequence[Tuple[str, str]]Strings which should be sent along with the request as metadata. | 
| Type | Description | 
| google.cloud.aiplatform_v1beta1.services.job_service.pagers.ListHyperparameterTuningJobsAsyncPager | Response message for JobService.ListHyperparameterTuningJobs Iterating over this object will yield results and resolve additional pages automatically. | 
list_model_deployment_monitoring_jobs
list_model_deployment_monitoring_jobs(request: Optional[google.cloud.aiplatform_v1beta1.types.job_service.ListModelDeploymentMonitoringJobsRequest] = None, *, parent: Optional[str] = None, retry: google.api_core.retry.Retry = <object object>, timeout: Optional[float] = None, metadata: Sequence[Tuple[str, str]] = ())Lists ModelDeploymentMonitoringJobs in a Location.
| Name | Description | 
| request | ListModelDeploymentMonitoringJobsRequestThe request object. Request message for JobService.ListModelDeploymentMonitoringJobs. | 
| parent | `str`Required. The parent of the ModelDeploymentMonitoringJob. Format:  | 
| retry | google.api_core.retry.RetryDesignation of what errors, if any, should be retried. | 
| timeout | floatThe timeout for this request. | 
| metadata | Sequence[Tuple[str, str]]Strings which should be sent along with the request as metadata. | 
| Type | Description | 
| google.cloud.aiplatform_v1beta1.services.job_service.pagers.ListModelDeploymentMonitoringJobsAsyncPager | Response message for JobService.ListModelDeploymentMonitoringJobs. Iterating over this object will yield results and resolve additional pages automatically. | 
model_deployment_monitoring_job_path
model_deployment_monitoring_job_path(
    project: str, location: str, model_deployment_monitoring_job: str
)Returns a fully-qualified model_deployment_monitoring_job string.
model_path
model_path(project: str, location: str, model: str)Returns a fully-qualified model string.
network_path
network_path(project: str, network: str)Returns a fully-qualified network string.
parse_batch_prediction_job_path
parse_batch_prediction_job_path(path: str)Parses a batch_prediction_job path into its component segments.
parse_common_billing_account_path
parse_common_billing_account_path(path: str)Parse a billing_account path into its component segments.
parse_common_folder_path
parse_common_folder_path(path: str)Parse a folder path into its component segments.
parse_common_location_path
parse_common_location_path(path: str)Parse a location path into its component segments.
parse_common_organization_path
parse_common_organization_path(path: str)Parse a organization path into its component segments.
parse_common_project_path
parse_common_project_path(path: str)Parse a project path into its component segments.
parse_custom_job_path
parse_custom_job_path(path: str)Parses a custom_job path into its component segments.
parse_data_labeling_job_path
parse_data_labeling_job_path(path: str)Parses a data_labeling_job path into its component segments.
parse_dataset_path
parse_dataset_path(path: str)Parses a dataset path into its component segments.
parse_endpoint_path
parse_endpoint_path(path: str)Parses a endpoint path into its component segments.
parse_hyperparameter_tuning_job_path
parse_hyperparameter_tuning_job_path(path: str)Parses a hyperparameter_tuning_job path into its component segments.
parse_model_deployment_monitoring_job_path
parse_model_deployment_monitoring_job_path(path: str)Parses a model_deployment_monitoring_job path into its component segments.
parse_model_path
parse_model_path(path: str)Parses a model path into its component segments.
parse_network_path
parse_network_path(path: str)Parses a network path into its component segments.
parse_tensorboard_path
parse_tensorboard_path(path: str)Parses a tensorboard path into its component segments.
parse_trial_path
parse_trial_path(path: str)Parses a trial path into its component segments.
pause_model_deployment_monitoring_job
pause_model_deployment_monitoring_job(request: Optional[google.cloud.aiplatform_v1beta1.types.job_service.PauseModelDeploymentMonitoringJobRequest] = None, *, name: Optional[str] = None, retry: google.api_core.retry.Retry = <object object>, timeout: Optional[float] = None, metadata: Sequence[Tuple[str, str]] = ())Pauses a ModelDeploymentMonitoringJob. If the job is running, the server makes a best effort to cancel the job. Will mark xref_ModelDeploymentMonitoringJob.state to 'PAUSED'.
| Name | Description | 
| request | PauseModelDeploymentMonitoringJobRequestThe request object. Request message for JobService.PauseModelDeploymentMonitoringJob. | 
| name | `str`Required. The resource name of the ModelDeploymentMonitoringJob to pause. Format:  | 
| retry | google.api_core.retry.RetryDesignation of what errors, if any, should be retried. | 
| timeout | floatThe timeout for this request. | 
| metadata | Sequence[Tuple[str, str]]Strings which should be sent along with the request as metadata. | 
resume_model_deployment_monitoring_job
resume_model_deployment_monitoring_job(request: Optional[google.cloud.aiplatform_v1beta1.types.job_service.ResumeModelDeploymentMonitoringJobRequest] = None, *, name: Optional[str] = None, retry: google.api_core.retry.Retry = <object object>, timeout: Optional[float] = None, metadata: Sequence[Tuple[str, str]] = ())Resumes a paused ModelDeploymentMonitoringJob. It will start to run from next scheduled time. A deleted ModelDeploymentMonitoringJob can't be resumed.
| Name | Description | 
| request | ResumeModelDeploymentMonitoringJobRequestThe request object. Request message for JobService.ResumeModelDeploymentMonitoringJob. | 
| name | `str`Required. The resource name of the ModelDeploymentMonitoringJob to resume. Format:  | 
| retry | google.api_core.retry.RetryDesignation of what errors, if any, should be retried. | 
| timeout | floatThe timeout for this request. | 
| metadata | Sequence[Tuple[str, str]]Strings which should be sent along with the request as metadata. | 
search_model_deployment_monitoring_stats_anomalies
search_model_deployment_monitoring_stats_anomalies(request: Optional[google.cloud.aiplatform_v1beta1.types.job_service.SearchModelDeploymentMonitoringStatsAnomaliesRequest] = None, *, model_deployment_monitoring_job: Optional[str] = None, deployed_model_id: Optional[str] = None, retry: google.api_core.retry.Retry = <object object>, timeout: Optional[float] = None, metadata: Sequence[Tuple[str, str]] = ())Searches Model Monitoring Statistics generated within a given time window.
| Name | Description | 
| request | SearchModelDeploymentMonitoringStatsAnomaliesRequestThe request object. Request message for JobService.SearchModelDeploymentMonitoringStatsAnomalies. | 
| model_deployment_monitoring_job | `str`Required. ModelDeploymentMonitoring Job resource name. Format: `projects/{project}/locations/{location}/modelDeploymentMonitoringJobs/{model_deployment_monitoring_job} This corresponds to the  | 
| deployed_model_id | `str`Required. The DeployedModel ID of the [google.cloud.aiplatform.master.ModelDeploymentMonitoringObjectiveConfig.deployed_model_id]. This corresponds to the  | 
| retry | google.api_core.retry.RetryDesignation of what errors, if any, should be retried. | 
| timeout | floatThe timeout for this request. | 
| metadata | Sequence[Tuple[str, str]]Strings which should be sent along with the request as metadata. | 
| Type | Description | 
| google.cloud.aiplatform_v1beta1.services.job_service.pagers.SearchModelDeploymentMonitoringStatsAnomaliesAsyncPager | Response message for JobService.SearchModelDeploymentMonitoringStatsAnomalies. Iterating over this object will yield results and resolve additional pages automatically. | 
tensorboard_path
tensorboard_path(project: str, location: str, tensorboard: str)Returns a fully-qualified tensorboard string.
trial_path
trial_path(project: str, location: str, study: str, trial: str)Returns a fully-qualified trial string.
update_model_deployment_monitoring_job
update_model_deployment_monitoring_job(request: Optional[google.cloud.aiplatform_v1beta1.types.job_service.UpdateModelDeploymentMonitoringJobRequest] = None, *, model_deployment_monitoring_job: Optional[google.cloud.aiplatform_v1beta1.types.model_deployment_monitoring_job.ModelDeploymentMonitoringJob] = None, update_mask: Optional[google.protobuf.field_mask_pb2.FieldMask] = None, retry: google.api_core.retry.Retry = <object object>, timeout: Optional[float] = None, metadata: Sequence[Tuple[str, str]] = ())Updates a ModelDeploymentMonitoringJob.
| Name | Description | 
| request | UpdateModelDeploymentMonitoringJobRequestThe request object. Request message for JobService.UpdateModelDeploymentMonitoringJob. | 
| model_deployment_monitoring_job | ModelDeploymentMonitoringJobRequired. The model monitoring configuration which replaces the resource on the server. This corresponds to the  | 
| update_mask | `google.protobuf.field_mask_pb2.FieldMask`Required. The update mask applies to the resource. This corresponds to the  | 
| retry | google.api_core.retry.RetryDesignation of what errors, if any, should be retried. | 
| timeout | floatThe timeout for this request. | 
| metadata | Sequence[Tuple[str, str]]Strings which should be sent along with the request as metadata. | 
| Type | Description | 
| google.api_core.operation_async.AsyncOperation | An object representing a long-running operation. The result type for the operation will be ModelDeploymentMonitoringJob Represents a job that runs periodically to monitor the deployed models in an endpoint. It will analyze the logged training & prediction data to detect any abnormal behaviors. |