- 2.24.0 (latest)
- 2.23.0
- 2.22.0
- 2.21.0
- 2.20.0
- 2.19.0
- 2.18.0
- 2.17.0
- 2.16.0
- 2.15.0
- 2.14.0
- 2.13.0
- 2.12.0
- 2.11.0
- 2.10.0
- 2.9.0
- 2.8.0
- 2.7.0
- 2.6.0
- 2.5.0
- 2.4.0
- 2.3.0
- 2.2.0
- 2.0.0-dev0
- 1.36.0
- 1.35.0
- 1.34.0
- 1.33.0
- 1.32.0
- 1.31.0
- 1.30.0
- 1.29.0
- 1.28.0
- 1.27.0
- 1.26.0
- 1.25.0
- 1.24.0
- 1.22.0
- 1.21.0
- 1.20.0
- 1.19.0
- 1.18.0
- 1.17.0
- 1.16.0
- 1.15.0
- 1.14.0
- 1.13.0
- 1.12.0
- 1.11.1
- 1.10.0
- 1.9.0
- 1.8.0
- 1.7.0
- 1.6.0
- 1.5.0
- 1.4.0
- 1.3.0
- 1.2.0
- 1.1.0
- 1.0.0
- 0.26.0
- 0.25.0
- 0.24.0
- 0.23.0
- 0.22.0
- 0.21.0
- 0.20.1
- 0.19.2
- 0.18.0
- 0.17.0
- 0.16.0
- 0.15.0
- 0.14.1
- 0.13.0
- 0.12.0
- 0.11.0
- 0.10.0
- 0.9.0
- 0.8.0
- 0.7.0
- 0.6.0
- 0.5.0
- 0.4.0
- 0.3.0
- 0.2.0
This module integrates BigQuery built-in AI functions for use with Series/DataFrame objects, such as AI.GENERATE_BOOL: https://cloud.google.com/bigquery/docs/reference/standard-sql/bigqueryml-syntax-ai-generate-bool
Modules Functions
classify
classify(
input: typing.Union[
bigframes.series.Series,
pandas.core.series.Series,
typing.List[
typing.Union[str, bigframes.series.Series, pandas.core.series.Series]
],
typing.Tuple[
typing.Union[str, bigframes.series.Series, pandas.core.series.Series], ...
],
],
categories: tuple[str, ...] | list[str],
*,
connection_id: str | None = None
) -> bigframes.series.Series
Classifies a given input into one of the specified categories. It will always return one of the provided categories best fit the prompt input.
Examples:
>>> import bigframes.pandas as bpd
>>> import bigframes.bigquery as bbq
>>> bpd.options.display.progress_bar = None
>>> df = bpd.DataFrame({'creature': ['Cat', 'Salmon']})
>>> df['type'] = bbq.ai.classify(df['creature'], ['Mammal', 'Fish'])
>>> df
creature type
0 Cat Mammal
1 Salmon Fish
<BLANKLINE>
[2 rows x 2 columns]
Parameters | |
---|---|
Name | Description |
input |
Series List[str|Series] Tuple[str|Series, ...]
A mixture of Series and string literals that specifies the input to send to the model. The Series can be BigFrames Series or pandas Series. |
categories |
tuple[str, ...] list[str]
Categories to classify the input into. |
connection_id |
str, optional
Specifies the connection to use to communicate with the model. For example, |
Returns | |
---|---|
Type | Description |
bigframes.series.Series |
A new series of strings. |
generate
generate(
prompt: typing.Union[
bigframes.series.Series,
pandas.core.series.Series,
typing.List[
typing.Union[str, bigframes.series.Series, pandas.core.series.Series]
],
typing.Tuple[
typing.Union[str, bigframes.series.Series, pandas.core.series.Series], ...
],
],
*,
connection_id: str | None = None,
endpoint: str | None = None,
request_type: typing.Literal["dedicated", "shared", "unspecified"] = "unspecified",
model_params: typing.Optional[typing.Mapping[typing.Any, typing.Any]] = None
) -> bigframes.series.Series
Returns the AI analysis based on the prompt, which can be any combination of text and unstructured data.
Examples:
>>> import bigframes.pandas as bpd
>>> import bigframes.bigquery as bbq
>>> bpd.options.display.progress_bar = None
>>> country = bpd.Series(["Japan", "Canada"])
>>> bbq.ai.generate(("What's the capital city of ", country, " one word only"))
0 {'result': 'Tokyo\n', 'full_response': '{"cand...
1 {'result': 'Ottawa\n', 'full_response': '{"can...
dtype: struct<result: string, full_response: extension<dbjson<JSONArrowType>>, status: string>[pyarrow]
>>> bbq.ai.generate(("What's the capital city of ", country, " one word only")).struct.field("result")
0 Tokyo\n
1 Ottawa\n
Name: result, dtype: string
Parameters | |
---|---|
Name | Description |
prompt |
Series List[str|Series] Tuple[str|Series, ...]
A mixture of Series and string literals that specifies the prompt to send to the model. The Series can be BigFrames Series or pandas Series. |
connection_id |
str, optional
Specifies the connection to use to communicate with the model. For example, |
endpoint |
str, optional
Specifies the Vertex AI endpoint to use for the model. For example |
request_type |
Literal["dedicated", "shared", "unspecified"]
Specifies the type of inference request to send to the Gemini model. The request type determines what quota the request uses. * "dedicated": function only uses Provisioned Throughput quota. The function returns the error Provisioned throughput is not purchased or is not active if Provisioned Throughput quota isn't available. * "shared": the function only uses dynamic shared quota (DSQ), even if you have purchased Provisioned Throughput quota. * "unspecified": If you haven't purchased Provisioned Throughput quota, the function uses DSQ quota. If you have purchased Provisioned Throughput quota, the function uses the Provisioned Throughput quota first. If requests exceed the Provisioned Throughput quota, the overflow traffic uses DSQ quota. |
model_params |
Mapping[Any, Any]
Provides additional parameters to the model. The MODEL_PARAMS value must conform to the generateContent request body format. |
Returns | |
---|---|
Type | Description |
bigframes.series.Series |
A new struct Series with the result data. The struct contains these fields: * "result": a STRING value containing the model's response to the prompt. The result is None if the request fails or is filtered by responsible AI. * "full_response": a JSON value containing the response from the projects.locations.endpoints.generateContent call to the model. The generated text is in the text element. * "status": a STRING value that contains the API response status for the corresponding row. This value is empty if the operation was successful. |
generate_bool
generate_bool(
prompt: typing.Union[
bigframes.series.Series,
pandas.core.series.Series,
typing.List[
typing.Union[str, bigframes.series.Series, pandas.core.series.Series]
],
typing.Tuple[
typing.Union[str, bigframes.series.Series, pandas.core.series.Series], ...
],
],
*,
connection_id: str | None = None,
endpoint: str | None = None,
request_type: typing.Literal["dedicated", "shared", "unspecified"] = "unspecified",
model_params: typing.Optional[typing.Mapping[typing.Any, typing.Any]] = None
) -> bigframes.series.Series
Returns the AI analysis based on the prompt, which can be any combination of text and unstructured data.
Examples:
>>> import bigframes.pandas as bpd
>>> import bigframes.bigquery as bbq
>>> bpd.options.display.progress_bar = None
>>> df = bpd.DataFrame({
... "col_1": ["apple", "bear", "pear"],
... "col_2": ["fruit", "animal", "animal"]
... })
>>> bbq.ai.generate_bool((df["col_1"], " is a ", df["col_2"]))
0 {'result': True, 'full_response': '{"candidate...
1 {'result': True, 'full_response': '{"candidate...
2 {'result': False, 'full_response': '{"candidat...
dtype: struct<result: bool, full_response: extension<dbjson<JSONArrowType>>, status: string>[pyarrow]
>>> bbq.ai.generate_bool((df["col_1"], " is a ", df["col_2"])).struct.field("result")
0 True
1 True
2 False
Name: result, dtype: boolean
Parameters | |
---|---|
Name | Description |
prompt |
Series List[str|Series] Tuple[str|Series, ...]
A mixture of Series and string literals that specifies the prompt to send to the model. The Series can be BigFrames Series or pandas Series. |
connection_id |
str, optional
Specifies the connection to use to communicate with the model. For example, |
endpoint |
str, optional
Specifies the Vertex AI endpoint to use for the model. For example |
request_type |
Literal["dedicated", "shared", "unspecified"]
Specifies the type of inference request to send to the Gemini model. The request type determines what quota the request uses. * "dedicated": function only uses Provisioned Throughput quota. The function returns the error Provisioned throughput is not purchased or is not active if Provisioned Throughput quota isn't available. * "shared": the function only uses dynamic shared quota (DSQ), even if you have purchased Provisioned Throughput quota. * "unspecified": If you haven't purchased Provisioned Throughput quota, the function uses DSQ quota. If you have purchased Provisioned Throughput quota, the function uses the Provisioned Throughput quota first. If requests exceed the Provisioned Throughput quota, the overflow traffic uses DSQ quota. |
model_params |
Mapping[Any, Any]
Provides additional parameters to the model. The MODEL_PARAMS value must conform to the generateContent request body format. |
Returns | |
---|---|
Type | Description |
bigframes.series.Series |
A new struct Series with the result data. The struct contains these fields: * "result": a BOOL value containing the model's response to the prompt. The result is None if the request fails or is filtered by responsible AI. * "full_response": a JSON value containing the response from the projects.locations.endpoints.generateContent call to the model. The generated text is in the text element. * "status": a STRING value that contains the API response status for the corresponding row. This value is empty if the operation was successful. |
generate_double
generate_double(
prompt: typing.Union[
bigframes.series.Series,
pandas.core.series.Series,
typing.List[
typing.Union[str, bigframes.series.Series, pandas.core.series.Series]
],
typing.Tuple[
typing.Union[str, bigframes.series.Series, pandas.core.series.Series], ...
],
],
*,
connection_id: str | None = None,
endpoint: str | None = None,
request_type: typing.Literal["dedicated", "shared", "unspecified"] = "unspecified",
model_params: typing.Optional[typing.Mapping[typing.Any, typing.Any]] = None
) -> bigframes.series.Series
Returns the AI analysis based on the prompt, which can be any combination of text and unstructured data.
Examples:
>>> import bigframes.pandas as bpd
>>> import bigframes.bigquery as bbq
>>> bpd.options.display.progress_bar = None
>>> animal = bpd.Series(["Kangaroo", "Rabbit", "Spider"])
>>> bbq.ai.generate_double(("How many legs does a ", animal, " have?"))
0 {'result': 2.0, 'full_response': '{"candidates...
1 {'result': 4.0, 'full_response': '{"candidates...
2 {'result': 8.0, 'full_response': '{"candidates...
dtype: struct<result: double, full_response: extension<dbjson<JSONArrowType>>, status: string>[pyarrow]
>>> bbq.ai.generate_double(("How many legs does a ", animal, " have?")).struct.field("result")
0 2.0
1 4.0
2 8.0
Name: result, dtype: Float64
Parameters | |
---|---|
Name | Description |
prompt |
Series List[str|Series] Tuple[str|Series, ...]
A mixture of Series and string literals that specifies the prompt to send to the model. The Series can be BigFrames Series or pandas Series. |
connection_id |
str, optional
Specifies the connection to use to communicate with the model. For example, |
endpoint |
str, optional
Specifies the Vertex AI endpoint to use for the model. For example |
request_type |
Literal["dedicated", "shared", "unspecified"]
Specifies the type of inference request to send to the Gemini model. The request type determines what quota the request uses. * "dedicated": function only uses Provisioned Throughput quota. The function returns the error Provisioned throughput is not purchased or is not active if Provisioned Throughput quota isn't available. * "shared": the function only uses dynamic shared quota (DSQ), even if you have purchased Provisioned Throughput quota. * "unspecified": If you haven't purchased Provisioned Throughput quota, the function uses DSQ quota. If you have purchased Provisioned Throughput quota, the function uses the Provisioned Throughput quota first. If requests exceed the Provisioned Throughput quota, the overflow traffic uses DSQ quota. |
model_params |
Mapping[Any, Any]
Provides additional parameters to the model. The MODEL_PARAMS value must conform to the generateContent request body format. |
Returns | |
---|---|
Type | Description |
bigframes.series.Series |
A new struct Series with the result data. The struct contains these fields: * "result": an DOUBLE value containing the model's response to the prompt. The result is None if the request fails or is filtered by responsible AI. * "full_response": a JSON value containing the response from the projects.locations.endpoints.generateContent call to the model. The generated text is in the text element. * "status": a STRING value that contains the API response status for the corresponding row. This value is empty if the operation was successful. |
generate_int
generate_int(
prompt: typing.Union[
bigframes.series.Series,
pandas.core.series.Series,
typing.List[
typing.Union[str, bigframes.series.Series, pandas.core.series.Series]
],
typing.Tuple[
typing.Union[str, bigframes.series.Series, pandas.core.series.Series], ...
],
],
*,
connection_id: str | None = None,
endpoint: str | None = None,
request_type: typing.Literal["dedicated", "shared", "unspecified"] = "unspecified",
model_params: typing.Optional[typing.Mapping[typing.Any, typing.Any]] = None
) -> bigframes.series.Series
Returns the AI analysis based on the prompt, which can be any combination of text and unstructured data.
Examples:
>>> import bigframes.pandas as bpd
>>> import bigframes.bigquery as bbq
>>> bpd.options.display.progress_bar = None
>>> animal = bpd.Series(["Kangaroo", "Rabbit", "Spider"])
>>> bbq.ai.generate_int(("How many legs does a ", animal, " have?"))
0 {'result': 2, 'full_response': '{"candidates":...
1 {'result': 4, 'full_response': '{"candidates":...
2 {'result': 8, 'full_response': '{"candidates":...
dtype: struct<result: int64, full_response: extension<dbjson<JSONArrowType>>, status: string>[pyarrow]
>>> bbq.ai.generate_int(("How many legs does a ", animal, " have?")).struct.field("result")
0 2
1 4
2 8
Name: result, dtype: Int64
Parameters | |
---|---|
Name | Description |
prompt |
Series List[str|Series] Tuple[str|Series, ...]
A mixture of Series and string literals that specifies the prompt to send to the model. The Series can be BigFrames Series or pandas Series. |
connection_id |
str, optional
Specifies the connection to use to communicate with the model. For example, |
endpoint |
str, optional
Specifies the Vertex AI endpoint to use for the model. For example |
request_type |
Literal["dedicated", "shared", "unspecified"]
Specifies the type of inference request to send to the Gemini model. The request type determines what quota the request uses. * "dedicated": function only uses Provisioned Throughput quota. The function returns the error Provisioned throughput is not purchased or is not active if Provisioned Throughput quota isn't available. * "shared": the function only uses dynamic shared quota (DSQ), even if you have purchased Provisioned Throughput quota. * "unspecified": If you haven't purchased Provisioned Throughput quota, the function uses DSQ quota. If you have purchased Provisioned Throughput quota, the function uses the Provisioned Throughput quota first. If requests exceed the Provisioned Throughput quota, the overflow traffic uses DSQ quota. |
model_params |
Mapping[Any, Any]
Provides additional parameters to the model. The MODEL_PARAMS value must conform to the generateContent request body format. |
Returns | |
---|---|
Type | Description |
bigframes.series.Series |
A new struct Series with the result data. The struct contains these fields: * "result": an integer (INT64) value containing the model's response to the prompt. The result is None if the request fails or is filtered by responsible AI. * "full_response": a JSON value containing the response from the projects.locations.endpoints.generateContent call to the model. The generated text is in the text element. * "status": a STRING value that contains the API response status for the corresponding row. This value is empty if the operation was successful. |
if_
if_(
prompt: typing.Union[
bigframes.series.Series,
pandas.core.series.Series,
typing.List[
typing.Union[str, bigframes.series.Series, pandas.core.series.Series]
],
typing.Tuple[
typing.Union[str, bigframes.series.Series, pandas.core.series.Series], ...
],
],
*,
connection_id: str | None = None
) -> bigframes.series.Series
Evaluates the prompt to True or False. Compared to ai.generate_bool()
, this function
provides optimization such that not all rows are evaluated with the LLM.
Examples:
import bigframes.pandas as bpd import bigframes.bigquery as bbq bpd.options.display.progress_bar = None us_state = bpd.Series(["Massachusetts", "Illinois", "Hawaii"]) bbq.ai.if_((us_state, " has a city called Springfield")) 0 True 1 True 2 False dtype: boolean
us_state[bbq.ai.if_((us_state, " has a city called Springfield"))] 0 Massachusetts 1 Illinois dtype: string
Parameters | |
---|---|
Name | Description |
prompt |
Series List[str|Series] Tuple[str|Series, ...]
A mixture of Series and string literals that specifies the prompt to send to the model. The Series can be BigFrames Series or pandas Series. |
connection_id |
str, optional
Specifies the connection to use to communicate with the model. For example, |
Returns | |
---|---|
Type | Description |
bigframes.series.Series |
A new series of bools. |
score
score(
prompt: typing.Union[
bigframes.series.Series,
pandas.core.series.Series,
typing.List[
typing.Union[str, bigframes.series.Series, pandas.core.series.Series]
],
typing.Tuple[
typing.Union[str, bigframes.series.Series, pandas.core.series.Series], ...
],
],
*,
connection_id: str | None = None
) -> bigframes.series.Series
Computes a score based on rubrics described in natural language. It will return a double value. There is no fixed range for the score returned. To get high quality results, provide a scoring rubric with examples in the prompt.
Examples:
>>> import bigframes.pandas as bpd
>>> import bigframes.bigquery as bbq
>>> bpd.options.display.progress_bar = None
>>> animal = bpd.Series(["Tiger", "Rabbit", "Blue Whale"])
>>> bbq.ai.score(("Rank the relative weights of ", animal, " on the scale from 1 to 3")) # doctest: +SKIP
0 2.0
1 1.0
2 3.0
dtype: Float64
Parameters | |
---|---|
Name | Description |
prompt |
Series List[str|Series] Tuple[str|Series, ...]
A mixture of Series and string literals that specifies the prompt to send to the model. The Series can be BigFrames Series or pandas Series. |
connection_id |
str, optional
Specifies the connection to use to communicate with the model. For example, |
Returns | |
---|---|
Type | Description |
bigframes.series.Series |
A new series of double (float) values. |