- 2.30.0 (latest)
- 2.29.0
- 2.28.0
- 2.27.0
- 2.26.0
- 2.25.0
- 2.24.0
- 2.23.0
- 2.22.0
- 2.21.0
- 2.20.0
- 2.19.0
- 2.18.0
- 2.17.0
- 2.16.0
- 2.15.0
- 2.14.0
- 2.13.0
- 2.12.0
- 2.11.0
- 2.10.0
- 2.9.0
- 2.8.0
- 2.7.0
- 2.6.0
- 2.5.0
- 2.4.0
- 2.3.0
- 2.2.0
- 1.36.0
- 1.35.0
- 1.34.0
- 1.33.0
- 1.32.0
- 1.31.0
- 1.30.0
- 1.29.0
- 1.28.0
- 1.27.0
- 1.26.0
- 1.25.0
- 1.24.0
- 1.22.0
- 1.21.0
- 1.20.0
- 1.19.0
- 1.18.0
- 1.17.0
- 1.16.0
- 1.15.0
- 1.14.0
- 1.13.0
- 1.12.0
- 1.11.1
- 1.10.0
- 1.9.0
- 1.8.0
- 1.7.0
- 1.6.0
- 1.5.0
- 1.4.0
- 1.3.0
- 1.2.0
- 1.1.0
- 1.0.0
- 0.26.0
- 0.25.0
- 0.24.0
- 0.23.0
- 0.22.0
- 0.21.0
- 0.20.1
- 0.19.2
- 0.18.0
- 0.17.0
- 0.16.0
- 0.15.0
- 0.14.1
- 0.13.0
- 0.12.0
- 0.11.0
- 0.10.0
- 0.9.0
- 0.8.0
- 0.7.0
- 0.6.0
- 0.5.0
- 0.4.0
- 0.3.0
- 0.2.0
Summary of entries of Methods for bigframes.
bigframes.bigquery.approx_top_count
approx_top_count(series, number)Returns the approximate top elements of expression as an array of STRUCTs.
See more: bigframes.bigquery.approx_top_count
bigframes.bigquery.array_agg
array_agg(obj)Group data and create arrays from selected columns, omitting NULLs to avoid BigQuery errors (NULLs not allowed in arrays).
See more: bigframes.bigquery.array_agg
bigframes.bigquery.array_length
array_length(series)Compute the length of each array element in the Series.
See more: bigframes.bigquery.array_length
bigframes.bigquery.array_to_string
array_to_string(series, delimiter)Converts array elements within a Series into delimited strings.
See more: bigframes.bigquery.array_to_string
bigframes.bigquery.create_vector_index
create_vector_index(
table_id,
column_name,
*,
replace=False,
index_name=None,
distance_type="cosine",
stored_column_names=(),
index_type="ivf",
ivf_options=None,
tree_ah_options=None,
session=None
)Creates a new vector index on a column of a table.
See more: bigframes.bigquery.create_vector_index
bigframes.bigquery.json_extract
json_extract(input, json_path)Extracts a JSON value and converts it to a SQL JSON-formatted STRING or
JSON value.
See more: bigframes.bigquery.json_extract
bigframes.bigquery.json_extract_array
json_extract_array(input, json_path="$")Extracts a JSON array and converts it to a SQL array of JSON-formatted
STRING or JSON values.
See more: bigframes.bigquery.json_extract_array
bigframes.bigquery.json_extract_string_array
json_extract_string_array(input, json_path="$", value_dtype=None)Extracts a JSON array and converts it to a SQL array of STRING values.
bigframes.bigquery.json_keys
json_keys(input, max_depth=None)Returns all keys in the root of a JSON object as an ARRAY of STRINGs.
See more: bigframes.bigquery.json_keys
bigframes.bigquery.json_query
json_query(input, json_path)Extracts a JSON value and converts it to a SQL JSON-formatted STRING
or JSON value.
See more: bigframes.bigquery.json_query
bigframes.bigquery.json_query_array
json_query_array(input, json_path="$")Extracts a JSON array and converts it to a SQL array of JSON-formatted
STRING or JSON values.
See more: bigframes.bigquery.json_query_array
bigframes.bigquery.json_set
json_set(input, json_path_value_pairs)Produces a new JSON value within a Series by inserting or replacing values at specified paths.
See more: bigframes.bigquery.json_set
bigframes.bigquery.json_value
json_value(input, json_path="$")Extracts a JSON scalar value and converts it to a SQL STRING value.
See more: bigframes.bigquery.json_value
bigframes.bigquery.json_value_array
json_value_array(input, json_path="$")Extracts a JSON array of scalar values and converts it to a SQL ARRAY<STRING>
value.
See more: bigframes.bigquery.json_value_array
bigframes.bigquery.parse_json
parse_json(input)Converts a series with a JSON-formatted STRING value to a JSON value.
See more: bigframes.bigquery.parse_json
bigframes.bigquery.sql_scalar
sql_scalar(sql_template, columns)Create a Series from a SQL template.
See more: bigframes.bigquery.sql_scalar
bigframes.bigquery.st_area
st_area(series)Returns the area in square meters covered by the polygons in the input
GEOGRAPHY.
See more: bigframes.bigquery.st_area
bigframes.bigquery.st_buffer
st_buffer(series, buffer_radius, num_seg_quarter_circle=8.0, use_spheroid=False)Computes a GEOGRAPHY that represents all points whose distance from the
input GEOGRAPHY is less than or equal to distance meters.
See more: bigframes.bigquery.st_buffer
bigframes.bigquery.st_centroid
st_centroid(series)Computes the geometric centroid of a GEOGRAPHY type.
See more: bigframes.bigquery.st_centroid
bigframes.bigquery.st_convexhull
st_convexhull(series)Computes the convex hull of a GEOGRAPHY type.
See more: bigframes.bigquery.st_convexhull
bigframes.bigquery.st_difference
st_difference(series, other)Returns a GEOGRAPHY that represents the point set difference of
geography_1 and geography_2.
See more: bigframes.bigquery.st_difference
bigframes.bigquery.st_distance
st_distance(series, other, *, use_spheroid=False)Returns the shortest distance in meters between two non-empty
GEOGRAPHY objects.
See more: bigframes.bigquery.st_distance
bigframes.bigquery.st_intersection
st_intersection(series, other)Returns a GEOGRAPHY that represents the point set intersection of the two
input GEOGRAPHYs.
See more: bigframes.bigquery.st_intersection
bigframes.bigquery.st_isclosed
st_isclosed(series)Returns TRUE for a non-empty Geography, where each element in the Geography has an empty boundary.
See more: bigframes.bigquery.st_isclosed
bigframes.bigquery.st_length
st_length(series, *, use_spheroid=False)Returns the total length in meters of the lines in the input GEOGRAPHY.
See more: bigframes.bigquery.st_length
bigframes.bigquery.st_regionstats
st_regionstats(geography, raster_id, band=None, include=None, options=None)Returns statistics summarizing the pixel values of the raster image referenced by raster_id that intersect with geography.
See more: bigframes.bigquery.st_regionstats
bigframes.bigquery.st_simplify
st_simplify(geography, tolerance_meters)Returns a simplified version of the input geography.
See more: bigframes.bigquery.st_simplify
bigframes.bigquery.struct
struct(value)Takes a DataFrame and converts it into a Series of structs with each struct entry corresponding to a DataFrame row and each struct field corresponding to a DataFrame column.
See more: bigframes.bigquery.struct
bigframes.bigquery.to_json
to_json(input)Converts a series with a JSON value to a JSON-formatted STRING value.
See more: bigframes.bigquery.to_json
bigframes.bigquery.to_json_string
to_json_string(input)Converts a series to a JSON-formatted STRING value.
See more: bigframes.bigquery.to_json_string
bigframes.bigquery.unix_micros
unix_micros(input)Converts a timestmap series to unix epoch microseconds.
See more: bigframes.bigquery.unix_micros
bigframes.bigquery.unix_millis
unix_millis(input)Converts a timestmap series to unix epoch milliseconds.
See more: bigframes.bigquery.unix_millis
bigframes.bigquery.unix_seconds
unix_seconds(input)Converts a timestmap series to unix epoch seconds.
See more: bigframes.bigquery.unix_seconds
bigframes.bigquery.vector_search
vector_search(
base_table,
column_to_search,
query,
*,
query_column_to_search=None,
top_k=None,
distance_type=None,
fraction_lists_to_search=None,
use_brute_force=None,
allow_large_results=None
)Conduct vector search which searches embeddings to find semantically similar entities.
See more: bigframes.bigquery.vector_search
bigframes.bigquery.ai.classify
classify(input, categories, *, connection_id=None)Classifies a given input into one of the specified categories.
See more: bigframes.bigquery.ai.classify
bigframes.bigquery.ai.forecast
forecast(
df,
*,
data_col,
timestamp_col,
model="TimesFM 2.0",
id_cols=None,
horizon=10,
confidence_level=0.95,
context_window=None
)Forecast time series at future horizon.
See more: bigframes.bigquery.ai.forecast
bigframes.bigquery.ai.generate
generate(
prompt,
*,
connection_id=None,
endpoint=None,
request_type="unspecified",
model_params=None,
output_schema=None
)Returns the AI analysis based on the prompt, which can be any combination of text and unstructured data.
See more: bigframes.bigquery.ai.generate
bigframes.bigquery.ai.generate_bool
generate_bool(
prompt,
*,
connection_id=None,
endpoint=None,
request_type="unspecified",
model_params=None
)Returns the AI analysis based on the prompt, which can be any combination of text and unstructured data.
See more: bigframes.bigquery.ai.generate_bool
bigframes.bigquery.ai.generate_double
generate_double(
prompt,
*,
connection_id=None,
endpoint=None,
request_type="unspecified",
model_params=None
)Returns the AI analysis based on the prompt, which can be any combination of text and unstructured data.
See more: bigframes.bigquery.ai.generate_double
bigframes.bigquery.ai.generate_int
generate_int(
prompt,
*,
connection_id=None,
endpoint=None,
request_type="unspecified",
model_params=None
)Returns the AI analysis based on the prompt, which can be any combination of text and unstructured data.
See more: bigframes.bigquery.ai.generate_int
bigframes.bigquery.ai.if_
if_(prompt, *, connection_id=None)Evaluates the prompt to True or False.
See more: bigframes.bigquery.ai.if_
bigframes.bigquery.ai.score
score(prompt, *, connection_id=None)Computes a score based on rubrics described in natural language.
See more: bigframes.bigquery.ai.score
bigframes.exceptions.format_message
format_message(message, fill=True)[Private] Formats a warning message.
See more: bigframes.exceptions.format_message
bigframes.ml.compose.cast
cast(typ, val)Cast a value to a type.
See more: bigframes.ml.compose.cast
bigframes.ml.imported.cast
cast(typ, val)Cast a value to a type.
See more: bigframes.ml.imported.cast
bigframes.ml.llm.cast
cast(typ, val)Cast a value to a type.
See more: bigframes.ml.llm.cast
bigframes.ml.model_selection.cast
cast(typ, val)Cast a value to a type.
See more: bigframes.ml.model_selection.cast
bigframes.ml.model_selection.cross_validate
cross_validate(estimator, X, y=None, *, cv=None)Evaluate metric(s) by cross-validation and also record fit/score times.
bigframes.ml.model_selection.train_test_split
train_test_split(
*arrays,
test_size=None,
train_size=None,
random_state=None,
stratify=None,
shuffle=True
)Splits dataframes or series into random train and test subsets.
bigframes.ml.preprocessing.cast
cast(typ, val)Cast a value to a type.
See more: bigframes.ml.preprocessing.cast
bigframes.pandas.clean_up_by_session_id
clean_up_by_session_id(session_id, location=None, project=None)Searches through BigQuery tables and routines and deletes the ones created during the session with the given session id.
See more: bigframes.pandas.clean_up_by_session_id
bigframes.pandas.close_session
close_session()Start a fresh session the next time a function requires a session.
See more: bigframes.pandas.close_session
bigframes.pandas.concat
Concatenate BigQuery DataFrames objects along a particular axis.
See more: bigframes.pandas.concat
bigframes.pandas.crosstab
crosstab(
index,
columns,
values=None,
rownames=None,
colnames=None,
aggfunc=None,
*,
session=None
)Compute a simple cross tabulation of two (or more) factors.
See more: bigframes.pandas.crosstab
bigframes.pandas.cut
cut(x, bins, *, right=True, labels=None, session=None)Bin values into discrete intervals.
See more: bigframes.pandas.cut
bigframes.pandas.deploy_remote_function
deploy_remote_function(func, **kwargs)Orchestrates the creation of a BigQuery remote function that deploys immediately.
See more: bigframes.pandas.deploy_remote_function
bigframes.pandas.deploy_udf
deploy_udf(func, **kwargs)Orchestrates the creation of a BigQuery UDF that deploys immediately.
See more: bigframes.pandas.deploy_udf
bigframes.pandas.from_glob_path
from_glob_path(path, *, connection=None, name=None)Create a BigFrames DataFrame that contains a BigFrames Blob column from a global wildcard path.
See more: bigframes.pandas.from_glob_path
bigframes.pandas.get_default_session_id
get_default_session_id()Gets the session id that is used whenever a custom session has not been provided.
See more: bigframes.pandas.get_default_session_id
bigframes.pandas.get_dummies
get_dummies(
data,
prefix=None,
prefix_sep="_",
dummy_na=False,
columns=None,
drop_first=False,
dtype=None,
)Convert categorical variable into dummy/indicator variables.
See more: bigframes.pandas.get_dummies
bigframes.pandas.get_global_session
get_global_session()Gets the global session.
See more: bigframes.pandas.get_global_session
bigframes.pandas.merge
merge(
left,
right,
how="inner",
on=None,
*,
left_on=None,
right_on=None,
left_index=False,
right_index=False,
sort=False,
suffixes=("_x", "_y")
)Merge DataFrame objects with a database-style join.
See more: bigframes.pandas.merge
bigframes.pandas.qcut
qcut(x, q, *, labels=None, duplicates="error")Quantile-based discretization function.
See more: bigframes.pandas.qcut
bigframes.pandas.read_arrow
read_arrow(pa_table)Load a PyArrow Table to a BigQuery DataFrames DataFrame.
See more: bigframes.pandas.read_arrow
bigframes.pandas.read_csv
read_csv(
filepath_or_buffer,
*,
sep=",",
header=0,
names=None,
index_col=None,
usecols=None,
dtype=None,
engine=None,
encoding=None,
write_engine="default",
**kwargs
)Loads data from a comma-separated values (csv) file into a DataFrame.
See more: bigframes.pandas.read_csv
bigframes.pandas.read_gbq
Loads a DataFrame from BigQuery.
See more: bigframes.pandas.read_gbq
bigframes.pandas.read_gbq_function
read_gbq_function(function_name, is_row_processor=False)Loads a BigQuery function from BigQuery.
See more: bigframes.pandas.read_gbq_function
bigframes.pandas.read_gbq_model
read_gbq_model(model_name)Loads a BigQuery ML model from BigQuery.
See more: bigframes.pandas.read_gbq_model
bigframes.pandas.read_gbq_object_table
read_gbq_object_table(object_table, *, name=None)Read an existing object table to create a BigFrames Blob DataFrame.
See more: bigframes.pandas.read_gbq_object_table
bigframes.pandas.read_gbq_query
Turn a SQL query into a DataFrame.
See more: bigframes.pandas.read_gbq_query
bigframes.pandas.read_gbq_table
Turn a BigQuery table into a DataFrame.
See more: bigframes.pandas.read_gbq_table
bigframes.pandas.read_json
read_json(
path_or_buf,
*,
orient="columns",
dtype=None,
encoding=None,
lines=False,
engine="ujson",
write_engine="default",
**kwargs
)Convert a JSON string to DataFrame object.
See more: bigframes.pandas.read_json
bigframes.pandas.read_pandas
Loads DataFrame from a pandas DataFrame.
See more: bigframes.pandas.read_pandas
bigframes.pandas.read_parquet
read_parquet(path, *, engine="auto", write_engine="default")Load a Parquet object from the file path (local or Cloud Storage), returning a DataFrame.
See more: bigframes.pandas.read_parquet
bigframes.pandas.read_pickle
read_pickle(
filepath_or_buffer,
compression="infer",
storage_options=None,
*,
write_engine="default"
)Load pickled BigFrames object (or any object) from file.
See more: bigframes.pandas.read_pickle
bigframes.pandas.remote_function
remote_function(
input_types=None,
output_type=None,
dataset=None,
*,
bigquery_connection=None,
reuse=True,
name=None,
packages=None,
cloud_function_service_account,
cloud_function_kms_key_name=None,
cloud_function_docker_repository=None,
max_batching_rows=1000,
cloud_function_timeout=600,
cloud_function_max_instances=None,
cloud_function_vpc_connector=None,
cloud_function_vpc_connector_egress_settings=None,
cloud_function_memory_mib=1024,
cloud_function_ingress_settings="internal-only",
cloud_build_service_account=None
)Decorator to turn a user defined function into a BigQuery remote function.
See more: bigframes.pandas.remote_function
bigframes.pandas.reset_session
reset_session()Start a fresh session the next time a function requires a session.
See more: bigframes.pandas.reset_session
bigframes.pandas.to_datetime
This function converts a scalar, array-like or Series to a datetime object.
See more: bigframes.pandas.to_datetime
bigframes.pandas.to_timedelta
to_timedelta(arg, unit=None, *, session=None)Converts a scalar or Series to a timedelta object.
See more: bigframes.pandas.to_timedelta
bigframes.pandas.udf
udf(
*,
input_types=None,
output_type=None,
dataset,
bigquery_connection=None,
name,
packages=None,
max_batching_rows=None,
container_cpu=None,
container_memory=None
)Decorator to turn a Python user defined function (udf) into a BigQuery managed user-defined function.
See more: bigframes.pandas.udf
bigframes.streaming.read_gbq_table
read_gbq_table(table)Turn a BigQuery table into a StreamingDataFrame.
See more: bigframes.streaming.read_gbq_table
bigframes._config.BigQueryOptions
BigQueryOptions(
credentials: typing.Optional[google.auth.credentials.Credentials] = None,
project: typing.Optional[str] = None,
location: typing.Optional[str] = None,
bq_connection: typing.Optional[str] = None,
use_regional_endpoints: bool = False,
application_name: typing.Optional[str] = None,
kms_key_name: typing.Optional[str] = None,
skip_bq_connection_check: bool = False,
*,
allow_large_results: bool = False,
ordering_mode: typing.Literal["strict", "partial"] = "strict",
client_endpoints_override: typing.Optional[dict] = None,
requests_transport_adapters: typing.Sequence[
typing.Tuple[str, requests.adapters.BaseAdapter]
] = (),
enable_polars_execution: bool = False
)Encapsulates configuration for working with a session.
See more: bigframes._config.BigQueryOptions
bigframes._config.BigQueryOptions.__init__
__init__(
credentials=None,
project=None,
location=None,
bq_connection=None,
use_regional_endpoints=False,
application_name=None,
kms_key_name=None,
skip_bq_connection_check=False,
*,
allow_large_results=False,
ordering_mode="strict",
client_endpoints_override=None,
requests_transport_adapters=(),
enable_polars_execution=False
)Initialize self.
See more: bigframes.config.BigQueryOptions._init
bigframes._config.ComputeOptions
ComputeOptions(
ai_ops_confirmation_threshold: typing.Optional[int] = 0,
ai_ops_threshold_autofail: bool = False,
allow_large_results: typing.Optional[bool] = None,
enable_multi_query_execution: bool = False,
maximum_bytes_billed: typing.Optional[int] = None,
maximum_result_rows: typing.Optional[int] = None,
semantic_ops_confirmation_threshold: typing.Optional[int] = 0,
)Encapsulates the configuration for compute options.
See more: bigframes._config.ComputeOptions
bigframes._config.ComputeOptions.__init__
__init__(
ai_ops_confirmation_threshold=0,
ai_ops_threshold_autofail=False,
allow_large_results=None,
enable_multi_query_execution=False,
maximum_bytes_billed=None,
maximum_result_rows=None,
semantic_ops_confirmation_threshold=0,
)Initialize self.
See more: bigframes.config.ComputeOptions._init
bigframes._config.ComputeOptions.assign_extra_query_labels
assign_extra_query_labels(**kwargs)Assigns additional custom labels for query configuration.
See more: bigframes._config.ComputeOptions.assign_extra_query_labels
bigframes._config.DisplayOptions
DisplayOptions(
max_columns: int = 20,
max_rows: int = 10,
precision: int = 6,
progress_bar: typing.Optional[str] = "auto",
repr_mode: typing.Literal["head", "deferred", "anywidget"] = "head",
max_colwidth: typing.Optional[int] = 50,
max_info_columns: int = 100,
max_info_rows: typing.Optional[int] = 200000,
memory_usage: bool = True,
blob_display: bool = True,
blob_display_width: typing.Optional[int] = None,
blob_display_height: typing.Optional[int] = None,
)Encapsulates the configuration for displaying objects.
See more: bigframes._config.DisplayOptions
bigframes._config.DisplayOptions.__init__
__init__(
max_columns=20,
max_rows=10,
precision=6,
progress_bar="auto",
repr_mode="head",
max_colwidth=50,
max_info_columns=100,
max_info_rows=200000,
memory_usage=True,
blob_display=True,
blob_display_width=None,
blob_display_height=None,
)Initialize self.
See more: bigframes.config.DisplayOptions._init
bigframes._config.ExperimentOptions
ExperimentOptions()Encapsulates the configration for experiments.
See more: bigframes._config.ExperimentOptions
bigframes._config.ExperimentOptions.__init__
__init__()API documentation for __init__ method.
See more: bigframes.config.ExperimentOptions._init
bigframes._config.Options
Options()Global options affecting BigQuery DataFrames behavior.
See more: bigframes._config.Options
bigframes._config.Options.__init__
__init__()API documentation for __init__ method.
See more: bigframes.config.Options._init
bigframes._config.Options.reset
reset()Reset the option settings to defaults.
See more: bigframes._config.Options.reset
bigframes._config.SamplingOptions
SamplingOptions(
max_download_size: typing.Optional[int] = 500,
enable_downsampling: bool = False,
sampling_method: typing.Literal["head", "uniform"] = "uniform",
random_state: typing.Optional[int] = None,
)Encapsulates the configuration for data sampling.
See more: bigframes._config.SamplingOptions
bigframes._config.SamplingOptions.__init__
__init__(
max_download_size=500,
enable_downsampling=False,
sampling_method="uniform",
random_state=None,
)Initialize self.
See more: bigframes.config.SamplingOptions._init
bigframes._config.SamplingOptions.with_disabled
with_disabled()Configures whether to disable downsampling .
bigframes._config.SamplingOptions.with_max_download_size
with_max_download_size(max_rows)Configures the maximum download size for data sampling in MB .
See more: bigframes._config.SamplingOptions.with_max_download_size
bigframes._config.SamplingOptions.with_method
with_method(method)Configures the downsampling algorithms to be chosen from .
bigframes._config.SamplingOptions.with_random_state
with_random_state(state)Configures the seed for the uniform downsampling algorithm .
See more: bigframes._config.SamplingOptions.with_random_state
bigframes._config.option_context
option_context(*args)Context manager to temporarily set thread-local options in the with
statement context.
See more: bigframes._config.option_context
bigframes._config.option_context.__init__
__init__(*args)API documentation for __init__ method.
See more: bigframes.config.option_context._init
bigframes.enums.DefaultIndexKind
DefaultIndexKind(value)Sentinel values used to override default indexing behavior.
See more: bigframes.enums.DefaultIndexKind
bigframes.enums.OrderingMode
OrderingMode(value)Values used to determine the ordering mode.
See more: bigframes.enums.OrderingMode
bigframes.geopandas.GeoSeries
GeoSeries(data=None, index=None, **kwargs)A Series object designed to store geometry objects.
See more: bigframes.geopandas.GeoSeries
bigframes.geopandas.GeoSeries.__init__
__init__(data=None, index=None, **kwargs)Initialize self.
See more: bigframes.geopandas.GeoSeries.init
bigframes.geopandas.GeoSeries.abs
abs()Return a Series/DataFrame with absolute numeric value of each element.
See more: bigframes.geopandas.GeoSeries.abs
bigframes.geopandas.GeoSeries.add
add(other)Return addition of Series and other, element-wise (binary operator add).
See more: bigframes.geopandas.GeoSeries.add
bigframes.geopandas.GeoSeries.add_prefix
add_prefix(prefix, axis=None)Prefix labels with string prefix.
See more: bigframes.geopandas.GeoSeries.add_prefix
bigframes.geopandas.GeoSeries.add_suffix
add_suffix(suffix, axis=None)Suffix labels with string suffix.
See more: bigframes.geopandas.GeoSeries.add_suffix
bigframes.geopandas.GeoSeries.agg
agg(func)Aggregate using one or more operations over the specified axis.
See more: bigframes.geopandas.GeoSeries.agg
bigframes.geopandas.GeoSeries.aggregate
aggregate(func)Aggregate using one or more operations over the specified axis.
See more: bigframes.geopandas.GeoSeries.aggregate
bigframes.geopandas.GeoSeries.all
all()Return whether all elements are True, potentially over an axis.
See more: bigframes.geopandas.GeoSeries.all
bigframes.geopandas.GeoSeries.any
any()Return whether any element is True, potentially over an axis.
See more: bigframes.geopandas.GeoSeries.any
bigframes.geopandas.GeoSeries.apply
apply(func, by_row="compat", *, args=())Invoke function on values of a Series.
See more: bigframes.geopandas.GeoSeries.apply
bigframes.geopandas.GeoSeries.argmax
argmax()Return int position of the largest value in the series.
See more: bigframes.geopandas.GeoSeries.argmax
bigframes.geopandas.GeoSeries.argmin
argmin()Return int position of the smallest value in the Series.
See more: bigframes.geopandas.GeoSeries.argmin
bigframes.geopandas.GeoSeries.astype
astype(dtype, *, errors="raise")Cast a pandas object to a specified dtype dtype.
See more: bigframes.geopandas.GeoSeries.astype
bigframes.geopandas.GeoSeries.autocorr
autocorr(lag=1)Compute the lag-N autocorrelation.
See more: bigframes.geopandas.GeoSeries.autocorr
bigframes.geopandas.GeoSeries.bar
bar(x=None, y=None, **kwargs)Draw a vertical bar plot.
See more: bigframes.geopandas.GeoSeries.bar
bigframes.geopandas.GeoSeries.between
between(left, right, inclusive="both")Return boolean Series equivalent to left <= series <= right.
See more: bigframes.geopandas.GeoSeries.between
bigframes.geopandas.GeoSeries.bfill
bfill(*, limit=None)Fill NA/NaN values by using the next valid observation to fill the gap.
See more: bigframes.geopandas.GeoSeries.bfill
bigframes.geopandas.GeoSeries.buffer
buffer(distance)API documentation for buffer method.
See more: bigframes.geopandas.GeoSeries.buffer
bigframes.geopandas.GeoSeries.cache
cache()Materializes the Series to a temporary table.
See more: bigframes.geopandas.GeoSeries.cache
bigframes.geopandas.GeoSeries.case_when
case_when(caselist)Replace values where the conditions are True.
See more: bigframes.geopandas.GeoSeries.case_when
bigframes.geopandas.GeoSeries.clip
clip(lower=None, upper=None)Trim values at input threshold(s).
See more: bigframes.geopandas.GeoSeries.clip
bigframes.geopandas.GeoSeries.combine
combine(other, func)Combine the Series with a Series or scalar according to func.
See more: bigframes.geopandas.GeoSeries.combine
bigframes.geopandas.GeoSeries.combine_first
combine_first(other)Update null elements with value in the same location in 'other'.
bigframes.geopandas.GeoSeries.copy
copy()Make a copy of this object's indices and data.
See more: bigframes.geopandas.GeoSeries.copy
bigframes.geopandas.GeoSeries.corr
corr(other, method="pearson", min_periods=None)Compute the correlation with the other Series.
See more: bigframes.geopandas.GeoSeries.corr
bigframes.geopandas.GeoSeries.count
count()Return number of non-NA/null observations in the Series.
See more: bigframes.geopandas.GeoSeries.count
bigframes.geopandas.GeoSeries.cov
cov(other)Compute covariance with Series, excluding missing values.
See more: bigframes.geopandas.GeoSeries.cov
bigframes.geopandas.GeoSeries.cummax
cummax()Return cumulative maximum over a DataFrame or Series axis.
See more: bigframes.geopandas.GeoSeries.cummax
bigframes.geopandas.GeoSeries.cummin
cummin()Return cumulative minimum over a DataFrame or Series axis.
See more: bigframes.geopandas.GeoSeries.cummin
bigframes.geopandas.GeoSeries.cumprod
cumprod()Return cumulative product over a DataFrame or Series axis.
See more: bigframes.geopandas.GeoSeries.cumprod
bigframes.geopandas.GeoSeries.cumsum
cumsum()Return cumulative sum over a DataFrame or Series axis.
See more: bigframes.geopandas.GeoSeries.cumsum
bigframes.geopandas.GeoSeries.describe
describe()Generate descriptive statistics.
See more: bigframes.geopandas.GeoSeries.describe
bigframes.geopandas.GeoSeries.diff
diff(periods=1)First discrete difference of element.
See more: bigframes.geopandas.GeoSeries.diff
bigframes.geopandas.GeoSeries.difference
difference(other)Returns a GeoSeries of the points in each aligned geometry that are not in other.
See more: bigframes.geopandas.GeoSeries.difference
bigframes.geopandas.GeoSeries.distance
distance(other)[Not Implemented] Use <xref uid="bigframes.bigquery.st_distance">bigframes.bigquery.st_distance</xref>(series, other)
instead to return the shorted distance between two
GEOGRAPHY objects in meters.
See more: bigframes.geopandas.GeoSeries.distance
bigframes.geopandas.GeoSeries.div
div(other)Return floating division of Series and other, element-wise (binary operator truediv).
See more: bigframes.geopandas.GeoSeries.div
bigframes.geopandas.GeoSeries.divide
divide(other)Return floating division of Series and other, element-wise (binary operator truediv).
See more: bigframes.geopandas.GeoSeries.divide
bigframes.geopandas.GeoSeries.divmod
divmod(other)Return integer division and modulo of Series and other, element-wise (binary operator divmod).
See more: bigframes.geopandas.GeoSeries.divmod
bigframes.geopandas.GeoSeries.dot
dot(other)Compute the dot product between the Series and the columns of other.
See more: bigframes.geopandas.GeoSeries.dot
bigframes.geopandas.GeoSeries.drop
drop(labels=None, *, axis=0, index=None, columns=None, level=None)Return Series with specified index labels removed.
See more: bigframes.geopandas.GeoSeries.drop
bigframes.geopandas.GeoSeries.drop_duplicates
drop_duplicates(*, keep="first")Return Series with duplicate values removed.
bigframes.geopandas.GeoSeries.droplevel
droplevel(level, axis=0)Return Series with requested index / column level(s) removed.
See more: bigframes.geopandas.GeoSeries.droplevel
bigframes.geopandas.GeoSeries.dropna
dropna(*, axis=0, inplace=False, how=None, ignore_index=False)Return a new Series with missing values removed.
See more: bigframes.geopandas.GeoSeries.dropna
bigframes.geopandas.GeoSeries.duplicated
duplicated(keep="first")Indicate duplicate Series values.
See more: bigframes.geopandas.GeoSeries.duplicated
bigframes.geopandas.GeoSeries.eq
eq(other)Return equal of Series and other, element-wise (binary operator eq).
See more: bigframes.geopandas.GeoSeries.eq
bigframes.geopandas.GeoSeries.equals
equals(other)Test whether two objects contain the same elements.
See more: bigframes.geopandas.GeoSeries.equals
bigframes.geopandas.GeoSeries.expanding
expanding(min_periods=1)Provide expanding window calculations.
See more: bigframes.geopandas.GeoSeries.expanding
bigframes.geopandas.GeoSeries.explode
explode(*, ignore_index=False)Transform each element of a list-like to a row.
See more: bigframes.geopandas.GeoSeries.explode
bigframes.geopandas.GeoSeries.ffill
ffill(*, limit=None)Fill NA/NaN values by propagating the last valid observation to next valid.
See more: bigframes.geopandas.GeoSeries.ffill
bigframes.geopandas.GeoSeries.fillna
fillna(value=None)Fill NA (NULL in BigQuery) values using the specified method.
See more: bigframes.geopandas.GeoSeries.fillna
bigframes.geopandas.GeoSeries.filter
filter(items=None, like=None, regex=None, axis=None)Subset the dataframe rows or columns according to the specified index labels.
See more: bigframes.geopandas.GeoSeries.filter
bigframes.geopandas.GeoSeries.floordiv
floordiv(other)Return integer division of Series and other, element-wise (binary operator floordiv).
See more: bigframes.geopandas.GeoSeries.floordiv
bigframes.geopandas.GeoSeries.from_wkt
from_wkt(data, index=None, *, session=None)Alternate constructor to create a GeoSeries from a list or array of WKT objects.
See more: bigframes.geopandas.GeoSeries.from_wkt
bigframes.geopandas.GeoSeries.from_xy
from_xy(x, y, index=None, session=None, **kwargs)Alternate constructor to create a GeoSeries of Point geometries from lists or arrays of x, y coordinates.
See more: bigframes.geopandas.GeoSeries.from_xy
bigframes.geopandas.GeoSeries.ge
ge(other)Get 'greater than or equal to' of Series and other, element-wise (binary operator ge).
See more: bigframes.geopandas.GeoSeries.ge
bigframes.geopandas.GeoSeries.get
get(key, default=None)Get item from object for given key (ex: DataFrame column).
See more: bigframes.geopandas.GeoSeries.get
bigframes.geopandas.GeoSeries.groupby
groupby(by=None, axis=0, level=None, as_index=True, *, dropna=True)Group Series using a mapper or by a Series of columns.
See more: bigframes.geopandas.GeoSeries.groupby
bigframes.geopandas.GeoSeries.gt
gt(other)Return Greater than of series and other, element-wise (binary operator gt).
See more: bigframes.geopandas.GeoSeries.gt
bigframes.geopandas.GeoSeries.head
head(n=5)Return the first n rows.
See more: bigframes.geopandas.GeoSeries.head
bigframes.geopandas.GeoSeries.hist
hist(by=None, bins=10, **kwargs)Draw one histogram of the DataFrame’s columns.
See more: bigframes.geopandas.GeoSeries.hist
bigframes.geopandas.GeoSeries.idxmax
idxmax()Return the row label of the maximum value.
See more: bigframes.geopandas.GeoSeries.idxmax
bigframes.geopandas.GeoSeries.idxmin
idxmin()Return the row label of the minimum value.
See more: bigframes.geopandas.GeoSeries.idxmin
bigframes.geopandas.GeoSeries.interpolate
interpolate(method="linear")Fill NaN values using an interpolation method.
bigframes.geopandas.GeoSeries.intersection
intersection(other)Returns a GeoSeries of the intersection of points in each aligned geometry with other.
bigframes.geopandas.GeoSeries.isin
isin(values)Whether elements in Series are contained in values.
See more: bigframes.geopandas.GeoSeries.isin
bigframes.geopandas.GeoSeries.isna
isna()Detect missing (NULL) values.
See more: bigframes.geopandas.GeoSeries.isna
bigframes.geopandas.GeoSeries.isnull
isnull()Detect missing (NULL) values.
See more: bigframes.geopandas.GeoSeries.isnull
bigframes.geopandas.GeoSeries.item
item()Return the first element of the underlying data as a Python scalar.
See more: bigframes.geopandas.GeoSeries.item
bigframes.geopandas.GeoSeries.items
items()Lazily iterate over (index, value) tuples.
See more: bigframes.geopandas.GeoSeries.items
bigframes.geopandas.GeoSeries.keys
keys()Return alias for index.
See more: bigframes.geopandas.GeoSeries.keys
bigframes.geopandas.GeoSeries.kurt
kurt()Return unbiased kurtosis over requested axis.
See more: bigframes.geopandas.GeoSeries.kurt
bigframes.geopandas.GeoSeries.kurtosis
kurtosis()Return unbiased kurtosis over requested axis.
See more: bigframes.geopandas.GeoSeries.kurtosis
bigframes.geopandas.GeoSeries.le
le(other)Get 'less than or equal to' of Series and other, element-wise (binary operator le).
See more: bigframes.geopandas.GeoSeries.le
bigframes.geopandas.GeoSeries.line
line(x=None, y=None, **kwargs)Plot Series or DataFrame as lines.
See more: bigframes.geopandas.GeoSeries.line
bigframes.geopandas.GeoSeries.lt
lt(other)Get 'less than' of Series and other, element-wise (binary operator lt).
See more: bigframes.geopandas.GeoSeries.lt
bigframes.geopandas.GeoSeries.map
map(arg, na_action=None, *, verify_integrity=False)Map values of Series according to an input mapping or function.
See more: bigframes.geopandas.GeoSeries.map
bigframes.geopandas.GeoSeries.mask
mask(cond, other=None)Replace values where the condition is True.
See more: bigframes.geopandas.GeoSeries.mask
bigframes.geopandas.GeoSeries.max
max()Return the maximum of the values over the requested axis.
See more: bigframes.geopandas.GeoSeries.max
bigframes.geopandas.GeoSeries.mean
mean()Return the mean of the values over the requested axis.
See more: bigframes.geopandas.GeoSeries.mean
bigframes.geopandas.GeoSeries.median
median(*, exact=True)Return the median of the values over the requested axis.
See more: bigframes.geopandas.GeoSeries.median
bigframes.geopandas.GeoSeries.min
min()Return the maximum of the values over the requested axis.
See more: bigframes.geopandas.GeoSeries.min
bigframes.geopandas.GeoSeries.mod
mod(other)Return modulo of Series and other, element-wise (binary operator mod).
See more: bigframes.geopandas.GeoSeries.mod
bigframes.geopandas.GeoSeries.mode
mode()Return the mode(s) of the Series.
See more: bigframes.geopandas.GeoSeries.mode
bigframes.geopandas.GeoSeries.mul
mul(other)Return multiplication of Series and other, element-wise (binary operator mul).
See more: bigframes.geopandas.GeoSeries.mul
bigframes.geopandas.GeoSeries.multiply
multiply(other)Return multiplication of Series and other, element-wise (binary operator mul).
See more: bigframes.geopandas.GeoSeries.multiply
bigframes.geopandas.GeoSeries.ne
ne(other)Return not equal of Series and other, element-wise (binary operator ne).
See more: bigframes.geopandas.GeoSeries.ne
bigframes.geopandas.GeoSeries.nlargest
nlargest(n=5, keep="first")Return the largest n elements.
See more: bigframes.geopandas.GeoSeries.nlargest
bigframes.geopandas.GeoSeries.notna
notna()Detect existing (non-missing) values.
See more: bigframes.geopandas.GeoSeries.notna
bigframes.geopandas.GeoSeries.notnull
notnull()Detect existing (non-missing) values.
See more: bigframes.geopandas.GeoSeries.notnull
bigframes.geopandas.GeoSeries.nsmallest
nsmallest(n=5, keep="first")Return the smallest n elements.
See more: bigframes.geopandas.GeoSeries.nsmallest
bigframes.geopandas.GeoSeries.nunique
nunique()Return number of unique elements in the object.
See more: bigframes.geopandas.GeoSeries.nunique
bigframes.geopandas.GeoSeries.pad
pad(*, limit=None)Fill NA/NaN values by propagating the last valid observation to next valid.
See more: bigframes.geopandas.GeoSeries.pad
bigframes.geopandas.GeoSeries.pct_change
pct_change(periods=1)Fractional change between the current and a prior element.
See more: bigframes.geopandas.GeoSeries.pct_change
bigframes.geopandas.GeoSeries.peek
peek(n=5, *, force=True, allow_large_results=None)Preview n arbitrary elements from the series without guarantees about row selection or ordering.
See more: bigframes.geopandas.GeoSeries.peek
bigframes.geopandas.GeoSeries.pipe
pipe(func, *args, **kwargs)Apply chainable functions that expect Series or DataFrames.
See more: bigframes.geopandas.GeoSeries.pipe
bigframes.geopandas.GeoSeries.pow
pow(other)Return Exponential power of series and other, element-wise (binary
operator pow).
See more: bigframes.geopandas.GeoSeries.pow
bigframes.geopandas.GeoSeries.prod
prod()Return the product of the values over the requested axis.
See more: bigframes.geopandas.GeoSeries.prod
bigframes.geopandas.GeoSeries.product
product()Return the product of the values over the requested axis.
See more: bigframes.geopandas.GeoSeries.product
bigframes.geopandas.GeoSeries.quantile
quantile(q=0.5)Return value at the given quantile.
See more: bigframes.geopandas.GeoSeries.quantile
bigframes.geopandas.GeoSeries.radd
radd(other)Return addition of Series and other, element-wise (binary operator radd).
See more: bigframes.geopandas.GeoSeries.radd
bigframes.geopandas.GeoSeries.rank
rank(
axis=0,
method="average",
numeric_only=False,
na_option="keep",
ascending=True,
pct=False,
)Compute numerical data ranks (1 through n) along axis.
See more: bigframes.geopandas.GeoSeries.rank
bigframes.geopandas.GeoSeries.rdiv
rdiv(other)Return floating division of Series and other, element-wise (binary operator rtruediv).
See more: bigframes.geopandas.GeoSeries.rdiv
bigframes.geopandas.GeoSeries.rdivmod
rdivmod(other)Return integer division and modulo of Series and other, element-wise (binary operator rdivmod).
See more: bigframes.geopandas.GeoSeries.rdivmod
bigframes.geopandas.GeoSeries.reindex
reindex(index=None, *, validate=None)Conform Series to new index with optional filling logic.
See more: bigframes.geopandas.GeoSeries.reindex
bigframes.geopandas.GeoSeries.reindex_like
reindex_like(other, *, validate=None)Return an object with matching indices as other object.
bigframes.geopandas.GeoSeries.rename
rename(index=None, *, inplace=False, **kwargs)Alter Series index labels or name.
See more: bigframes.geopandas.GeoSeries.rename
bigframes.geopandas.GeoSeries.rename_axis
rename_axis(mapper, *, inplace=False, **kwargs)Set the name of the axis for the index or columns.
bigframes.geopandas.GeoSeries.reorder_levels
reorder_levels(order, axis=0)Rearrange index levels using input order.
bigframes.geopandas.GeoSeries.replace
replace(to_replace, value=None, *, regex=False)Replace values given in to_replace with value.
See more: bigframes.geopandas.GeoSeries.replace
bigframes.geopandas.GeoSeries.resample
resample(rule, *, closed=None, label=None, level=None, origin="start_day")Resample time-series data.
See more: bigframes.geopandas.GeoSeries.resample
bigframes.geopandas.GeoSeries.reset_index
reset_index(
level=None, *, name=None, drop=False, inplace=False, allow_duplicates=None
)Generate a new DataFrame or Series with the index reset.
bigframes.geopandas.GeoSeries.rfloordiv
rfloordiv(other)Return integer division of Series and other, element-wise (binary operator rfloordiv).
See more: bigframes.geopandas.GeoSeries.rfloordiv
bigframes.geopandas.GeoSeries.rmod
rmod(other)Return modulo of Series and other, element-wise (binary operator mod).
See more: bigframes.geopandas.GeoSeries.rmod
bigframes.geopandas.GeoSeries.rmul
rmul(other)Return multiplication of Series and other, element-wise (binary operator mul).
See more: bigframes.geopandas.GeoSeries.rmul
bigframes.geopandas.GeoSeries.rolling
rolling(window, min_periods=None, closed="right")Provide rolling window calculations.
See more: bigframes.geopandas.GeoSeries.rolling
bigframes.geopandas.GeoSeries.round
round(decimals=0)Round each value in a Series to the given number of decimals.
See more: bigframes.geopandas.GeoSeries.round
bigframes.geopandas.GeoSeries.rpow
rpow(other)Return Exponential power of series and other, element-wise (binary
operator rpow).
See more: bigframes.geopandas.GeoSeries.rpow
bigframes.geopandas.GeoSeries.rsub
rsub(other)Return subtraction of Series and other, element-wise (binary operator rsub).
See more: bigframes.geopandas.GeoSeries.rsub
bigframes.geopandas.GeoSeries.rtruediv
rtruediv(other)Return floating division of Series and other, element-wise (binary operator rtruediv).
See more: bigframes.geopandas.GeoSeries.rtruediv
bigframes.geopandas.GeoSeries.sample
sample(n=None, frac=None, *, random_state=None, sort="random")Return a random sample of items from an axis of object.
See more: bigframes.geopandas.GeoSeries.sample
bigframes.geopandas.GeoSeries.shift
shift(periods=1)Shift index by desired number of periods.
See more: bigframes.geopandas.GeoSeries.shift
bigframes.geopandas.GeoSeries.simplify
simplify(tolerance, preserve_topology=True)[Not Implemented] Use <xref uid="bigframes.bigquery.st_simplify">bigframes.bigquery.st_simplify</xref>(series, tolerance_meters),
instead to set the tolerance in meters.
See more: bigframes.geopandas.GeoSeries.simplify
bigframes.geopandas.GeoSeries.skew
skew()Return unbiased skew over requested axis.
See more: bigframes.geopandas.GeoSeries.skew
bigframes.geopandas.GeoSeries.sort_index
sort_index(*, axis=0, inplace=False, ascending=True, na_position="last")Sort Series by index labels.
See more: bigframes.geopandas.GeoSeries.sort_index
bigframes.geopandas.GeoSeries.sort_values
sort_values(
*, axis=0, inplace=False, ascending=True, kind="quicksort", na_position="last"
)Sort by the values.
bigframes.geopandas.GeoSeries.std
std()Return sample standard deviation over requested axis.
See more: bigframes.geopandas.GeoSeries.std
bigframes.geopandas.GeoSeries.sub
sub(other)Return subtraction of Series and other, element-wise (binary operator sub).
See more: bigframes.geopandas.GeoSeries.sub
bigframes.geopandas.GeoSeries.subtract
subtract(other)Return subtraction of Series and other, element-wise (binary operator sub).
See more: bigframes.geopandas.GeoSeries.subtract
bigframes.geopandas.GeoSeries.sum
sum()Return the sum of the values over the requested axis.
See more: bigframes.geopandas.GeoSeries.sum
bigframes.geopandas.GeoSeries.swaplevel
swaplevel(i=-2, j=-1)Swap levels i and j in a MultiIndex.
See more: bigframes.geopandas.GeoSeries.swaplevel
bigframes.geopandas.GeoSeries.tail
tail(n=5)Return the last n rows.
See more: bigframes.geopandas.GeoSeries.tail
bigframes.geopandas.GeoSeries.take
take(indices, axis=0, **kwargs)Return the elements in the given positional indices along an axis.
See more: bigframes.geopandas.GeoSeries.take
bigframes.geopandas.GeoSeries.to_csv
to_csv(
path_or_buf=None, sep=",", *, header=True, index=True, allow_large_results=None
)Write object to a comma-separated values (csv) file on Cloud Storage.
See more: bigframes.geopandas.GeoSeries.to_csv
bigframes.geopandas.GeoSeries.to_dict
to_dict(into=dict, *, allow_large_results=None)Convert Series to {label -> value} dict or dict-like object.
See more: bigframes.geopandas.GeoSeries.to_dict
bigframes.geopandas.GeoSeries.to_excel
to_excel(excel_writer, sheet_name="Sheet1", *, allow_large_results=None, **kwargs)Write Series to an Excel sheet.
See more: bigframes.geopandas.GeoSeries.to_excel
bigframes.geopandas.GeoSeries.to_frame
to_frame(name=None)Convert Series to DataFrame.
See more: bigframes.geopandas.GeoSeries.to_frame
bigframes.geopandas.GeoSeries.to_json
to_json(
path_or_buf=None, orient=None, *, lines=False, index=True, allow_large_results=None
)Convert the object to a JSON string, written to Cloud Storage.
See more: bigframes.geopandas.GeoSeries.to_json
bigframes.geopandas.GeoSeries.to_latex
to_latex(
buf=None,
columns=None,
header=True,
index=True,
*,
allow_large_results=None,
**kwargs
)Render object to a LaTeX tabular, longtable, or nested table.
See more: bigframes.geopandas.GeoSeries.to_latex
bigframes.geopandas.GeoSeries.to_list
to_list(*, allow_large_results=None)Return a list of the values.
See more: bigframes.geopandas.GeoSeries.to_list
bigframes.geopandas.GeoSeries.to_markdown
to_markdown(buf=None, mode="wt", index=True, *, allow_large_results=None, **kwargs)Print Series in Markdown-friendly format.
bigframes.geopandas.GeoSeries.to_numpy
to_numpy(
dtype=None,
copy=False,
na_value=_NoDefault.no_default,
*,
allow_large_results=None,
**kwargs
)A NumPy ndarray representing the values in this Series or Index.
See more: bigframes.geopandas.GeoSeries.to_numpy
bigframes.geopandas.GeoSeries.to_pandas
to_pandas(
max_download_size=None,
sampling_method=None,
random_state=None,
*,
ordered=True,
dry_run=False,
allow_large_results=None
)Writes Series to pandas Series.
See more: bigframes.geopandas.GeoSeries.to_pandas
bigframes.geopandas.GeoSeries.to_pandas_batches
to_pandas_batches(page_size=None, max_results=None, *, allow_large_results=None)Stream Series results to an iterable of pandas Series.
bigframes.geopandas.GeoSeries.to_pickle
to_pickle(path, *, allow_large_results=None, **kwargs)Pickle (serialize) object to file.
See more: bigframes.geopandas.GeoSeries.to_pickle
bigframes.geopandas.GeoSeries.to_string
to_string(
buf=None,
na_rep="NaN",
float_format=None,
header=True,
index=True,
length=False,
dtype=False,
name=False,
max_rows=None,
min_rows=None,
*,
allow_large_results=None
)Render a string representation of the Series.
See more: bigframes.geopandas.GeoSeries.to_string
bigframes.geopandas.GeoSeries.to_wkt
to_wkt()Convert GeoSeries geometries to WKT.
See more: bigframes.geopandas.GeoSeries.to_wkt
bigframes.geopandas.GeoSeries.to_xarray
to_xarray(*, allow_large_results=None)Return an xarray object from the pandas object.
See more: bigframes.geopandas.GeoSeries.to_xarray
bigframes.geopandas.GeoSeries.tolist
tolist(*, allow_large_results=None)Return a list of the values.
See more: bigframes.geopandas.GeoSeries.tolist
bigframes.geopandas.GeoSeries.transpose
transpose()Return the transpose, which is by definition self.
See more: bigframes.geopandas.GeoSeries.transpose
bigframes.geopandas.GeoSeries.truediv
truediv(other)Return floating division of Series and other, element-wise (binary operator truediv).
See more: bigframes.geopandas.GeoSeries.truediv
bigframes.geopandas.GeoSeries.unique
unique(keep_order=True)Return unique values of Series object.
See more: bigframes.geopandas.GeoSeries.unique
bigframes.geopandas.GeoSeries.unstack
unstack(level=-1)Unstack, also known as pivot, Series with MultiIndex to produce DataFrame.
See more: bigframes.geopandas.GeoSeries.unstack
bigframes.geopandas.GeoSeries.update
update(other)Modify Series in place using values from passed Series.
See more: bigframes.geopandas.GeoSeries.update
bigframes.geopandas.GeoSeries.value_counts
value_counts(normalize=False, sort=True, ascending=False, *, dropna=True)Return a Series containing counts of unique values.
bigframes.geopandas.GeoSeries.var
var()Return unbiased variance over requested axis.
See more: bigframes.geopandas.GeoSeries.var
bigframes.geopandas.GeoSeries.where
where(cond, other=None)Replace values where the condition is False.
See more: bigframes.geopandas.GeoSeries.where
bigframes.ml.cluster.KMeans
KMeans(
n_clusters: int = 8,
*,
init: typing.Literal["kmeans++", "random", "custom"] = "kmeans++",
init_col: typing.Optional[str] = None,
distance_type: typing.Literal["euclidean", "cosine"] = "euclidean",
max_iter: int = 20,
tol: float = 0.01,
warm_start: bool = False
)K-Means clustering.
See more: bigframes.ml.cluster.KMeans
bigframes.ml.cluster.KMeans.__init__
__init__(
n_clusters=8,
*,
init="kmeans++",
init_col=None,
distance_type="euclidean",
max_iter=20,
tol=0.01,
warm_start=False
)API documentation for __init__ method.
See more: bigframes.ml.cluster.KMeans.init
bigframes.ml.cluster.KMeans.detect_anomalies
detect_anomalies(X, *, contamination=0.1)Detect the anomaly data points of the input.
bigframes.ml.cluster.KMeans.fit
fit(X, y=None)Compute k-means clustering.
See more: bigframes.ml.cluster.KMeans.fit
bigframes.ml.cluster.KMeans.get_params
get_params(deep=True)Get parameters for this estimator.
See more: bigframes.ml.cluster.KMeans.get_params
bigframes.ml.cluster.KMeans.predict
predict(X)Predict the closest cluster each sample in X belongs to.
See more: bigframes.ml.cluster.KMeans.predict
bigframes.ml.cluster.KMeans.register
register(vertex_ai_model_id=None)Register the model to Vertex AI.
See more: bigframes.ml.cluster.KMeans.register
bigframes.ml.cluster.KMeans.score
score(X, y=None)Calculate evaluation metrics of the model.
See more: bigframes.ml.cluster.KMeans.score
bigframes.ml.cluster.KMeans.to_gbq
to_gbq(model_name, replace=False)Save the model to BigQuery.
See more: bigframes.ml.cluster.KMeans.to_gbq
bigframes.ml.compose.ColumnTransformer
ColumnTransformer(
transformers: typing.Iterable[
typing.Tuple[
str,
typing.Union[
bigframes.ml.preprocessing.OneHotEncoder,
bigframes.ml.preprocessing.StandardScaler,
bigframes.ml.preprocessing.MaxAbsScaler,
bigframes.ml.preprocessing.MinMaxScaler,
bigframes.ml.preprocessing.KBinsDiscretizer,
bigframes.ml.preprocessing.LabelEncoder,
bigframes.ml.preprocessing.PolynomialFeatures,
bigframes.ml.impute.SimpleImputer,
bigframes.ml.compose.SQLScalarColumnTransformer,
],
typing.Union[str, typing.Iterable[str]],
]
],
)Applies transformers to columns of BigQuery DataFrames.
See more: bigframes.ml.compose.ColumnTransformer
bigframes.ml.compose.ColumnTransformer.__init__
__init__(transformers)API documentation for __init__ method.
bigframes.ml.compose.ColumnTransformer.fit
fit(X, y=None)Fit all transformers using X.
bigframes.ml.compose.ColumnTransformer.fit_transform
fit_transform(X, y=None)API documentation for fit_transform method.
See more: bigframes.ml.compose.ColumnTransformer.fit_transform
bigframes.ml.compose.ColumnTransformer.get_params
get_params(deep=True)Get parameters for this estimator.
bigframes.ml.compose.ColumnTransformer.to_gbq
to_gbq(model_name, replace=False)Save the transformer as a BigQuery model.
bigframes.ml.compose.ColumnTransformer.transform
transform(X)Transform X separately by each transformer, concatenate results.
bigframes.ml.compose.SQLScalarColumnTransformer
SQLScalarColumnTransformer(sql: str, target_column: str = "transformed_{0}")Wrapper for plain SQL code contained in a ColumnTransformer.
bigframes.ml.compose.SQLScalarColumnTransformer.__init__
__init__(sql, target_column="transformed_{0}")Initialize self.
See more: bigframes.ml.compose.SQLScalarColumnTransformer.init
bigframes.ml.decomposition.MatrixFactorization
MatrixFactorization(
*,
feedback_type: typing.Literal["explicit", "implicit"] = "explicit",
num_factors: int,
user_col: str,
item_col: str,
rating_col: str = "rating",
l2_reg: float = 1.0
)Matrix Factorization (MF).
bigframes.ml.decomposition.MatrixFactorization.__init__
__init__(
*,
feedback_type="explicit",
num_factors,
user_col,
item_col,
rating_col="rating",
l2_reg=1.0
)API documentation for __init__ method.
See more: bigframes.ml.decomposition.MatrixFactorization.init
bigframes.ml.decomposition.MatrixFactorization.fit
fit(X, y=None)Fit the model according to the given training data.
See more: bigframes.ml.decomposition.MatrixFactorization.fit
bigframes.ml.decomposition.MatrixFactorization.get_params
get_params(deep=True)Get parameters for this estimator.
See more: bigframes.ml.decomposition.MatrixFactorization.get_params
bigframes.ml.decomposition.MatrixFactorization.predict
predict(X)Generate a predicted rating for every user-item row combination for a matrix factorization model.
See more: bigframes.ml.decomposition.MatrixFactorization.predict
bigframes.ml.decomposition.MatrixFactorization.register
register(vertex_ai_model_id=None)Register the model to Vertex AI.
See more: bigframes.ml.decomposition.MatrixFactorization.register
bigframes.ml.decomposition.MatrixFactorization.score
score(X=None, y=None)Calculate evaluation metrics of the model.
See more: bigframes.ml.decomposition.MatrixFactorization.score
bigframes.ml.decomposition.MatrixFactorization.to_gbq
to_gbq(model_name, replace=False)Save the model to BigQuery.
See more: bigframes.ml.decomposition.MatrixFactorization.to_gbq
bigframes.ml.decomposition.PCA
PCA(
n_components: typing.Optional[typing.Union[int, float]] = None,
*,
svd_solver: typing.Literal["full", "randomized", "auto"] = "auto"
)Principal component analysis (PCA).
See more: bigframes.ml.decomposition.PCA
bigframes.ml.decomposition.PCA.__init__
__init__(n_components=None, *, svd_solver="auto")API documentation for __init__ method.
See more: bigframes.ml.decomposition.PCA.init
bigframes.ml.decomposition.PCA.detect_anomalies
detect_anomalies(X, *, contamination=0.1)Detect the anomaly data points of the input.
bigframes.ml.decomposition.PCA.fit
fit(X, y=None)Fit the model according to the given training data.
See more: bigframes.ml.decomposition.PCA.fit
bigframes.ml.decomposition.PCA.get_params
get_params(deep=True)Get parameters for this estimator.
bigframes.ml.decomposition.PCA.predict
predict(X)Predict the closest cluster for each sample in X.
See more: bigframes.ml.decomposition.PCA.predict
bigframes.ml.decomposition.PCA.register
register(vertex_ai_model_id=None)Register the model to Vertex AI.
See more: bigframes.ml.decomposition.PCA.register
bigframes.ml.decomposition.PCA.score
score(X=None, y=None)Calculate evaluation metrics of the model.
See more: bigframes.ml.decomposition.PCA.score
bigframes.ml.decomposition.PCA.to_gbq
to_gbq(model_name, replace=False)Save the model to BigQuery.
See more: bigframes.ml.decomposition.PCA.to_gbq
bigframes.ml.ensemble.RandomForestClassifier
RandomForestClassifier(
n_estimators: int = 100,
*,
tree_method: typing.Literal["auto", "exact", "approx", "hist"] = "auto",
min_tree_child_weight: int = 1,
colsample_bytree: float = 1.0,
colsample_bylevel: float = 1.0,
colsample_bynode: float = 0.8,
gamma: float = 0.0,
max_depth: int = 15,
subsample: float = 0.8,
reg_alpha: float = 0.0,
reg_lambda: float = 1.0,
tol: float = 0.01,
enable_global_explain: bool = False,
xgboost_version: typing.Literal["0.9", "1.1"] = "0.9"
)A random forest classifier.
bigframes.ml.ensemble.RandomForestClassifier.__init__
__init__(
n_estimators=100,
*,
tree_method="auto",
min_tree_child_weight=1,
colsample_bytree=1.0,
colsample_bylevel=1.0,
colsample_bynode=0.8,
gamma=0.0,
max_depth=15,
subsample=0.8,
reg_alpha=0.0,
reg_lambda=1.0,
tol=0.01,
enable_global_explain=False,
xgboost_version="0.9"
)API documentation for __init__ method.
bigframes.ml.ensemble.RandomForestClassifier.fit
fit(X, y, X_eval=None, y_eval=None)Build a forest of trees from the training set (X, y).
bigframes.ml.ensemble.RandomForestClassifier.get_params
get_params(deep=True)Get parameters for this estimator.
See more: bigframes.ml.ensemble.RandomForestClassifier.get_params
bigframes.ml.ensemble.RandomForestClassifier.predict
predict(X)Predict regression target for X.
See more: bigframes.ml.ensemble.RandomForestClassifier.predict
bigframes.ml.ensemble.RandomForestClassifier.register
register(vertex_ai_model_id=None)Register the model to Vertex AI.
See more: bigframes.ml.ensemble.RandomForestClassifier.register
bigframes.ml.ensemble.RandomForestClassifier.score
score(X, y)Calculate evaluation metrics of the model.
See more: bigframes.ml.ensemble.RandomForestClassifier.score
bigframes.ml.ensemble.RandomForestClassifier.to_gbq
to_gbq(model_name, replace=False)Save the model to BigQuery.
See more: bigframes.ml.ensemble.RandomForestClassifier.to_gbq
bigframes.ml.ensemble.RandomForestRegressor
RandomForestRegressor(
n_estimators: int = 100,
*,
tree_method: typing.Literal["auto", "exact", "approx", "hist"] = "auto",
min_tree_child_weight: int = 1,
colsample_bytree: float = 1.0,
colsample_bylevel: float = 1.0,
colsample_bynode: float = 0.8,
gamma: float = 0.0,
max_depth: int = 15,
subsample: float = 0.8,
reg_alpha: float = 0.0,
reg_lambda: float = 1.0,
tol: float = 0.01,
enable_global_explain: bool = False,
xgboost_version: typing.Literal["0.9", "1.1"] = "0.9"
)A random forest regressor.
bigframes.ml.ensemble.RandomForestRegressor.__init__
__init__(
n_estimators=100,
*,
tree_method="auto",
min_tree_child_weight=1,
colsample_bytree=1.0,
colsample_bylevel=1.0,
colsample_bynode=0.8,
gamma=0.0,
max_depth=15,
subsample=0.8,
reg_alpha=0.0,
reg_lambda=1.0,
tol=0.01,
enable_global_explain=False,
xgboost_version="0.9"
)API documentation for __init__ method.
bigframes.ml.ensemble.RandomForestRegressor.fit
fit(X, y, X_eval=None, y_eval=None)Build a forest of trees from the training set (X, y).
bigframes.ml.ensemble.RandomForestRegressor.get_params
get_params(deep=True)Get parameters for this estimator.
See more: bigframes.ml.ensemble.RandomForestRegressor.get_params
bigframes.ml.ensemble.RandomForestRegressor.predict
predict(X)Predict regression target for X.
See more: bigframes.ml.ensemble.RandomForestRegressor.predict
bigframes.ml.ensemble.RandomForestRegressor.register
register(vertex_ai_model_id=None)Register the model to Vertex AI.
See more: bigframes.ml.ensemble.RandomForestRegressor.register
bigframes.ml.ensemble.RandomForestRegressor.score
score(X, y)Calculate evaluation metrics of the model.
bigframes.ml.ensemble.RandomForestRegressor.to_gbq
to_gbq(model_name, replace=False)Save the model to BigQuery.
See more: bigframes.ml.ensemble.RandomForestRegressor.to_gbq
bigframes.ml.ensemble.XGBClassifier
XGBClassifier(
n_estimators: int = 1,
*,
booster: typing.Literal["gbtree", "dart"] = "gbtree",
dart_normalized_type: typing.Literal["tree", "forest"] = "tree",
tree_method: typing.Literal["auto", "exact", "approx", "hist"] = "auto",
min_tree_child_weight: int = 1,
colsample_bytree: float = 1.0,
colsample_bylevel: float = 1.0,
colsample_bynode: float = 1.0,
gamma: float = 0.0,
max_depth: int = 6,
subsample: float = 1.0,
reg_alpha: float = 0.0,
reg_lambda: float = 1.0,
learning_rate: float = 0.3,
max_iterations: int = 20,
tol: float = 0.01,
enable_global_explain: bool = False,
xgboost_version: typing.Literal["0.9", "1.1"] = "0.9"
)XGBoost classifier model.
See more: bigframes.ml.ensemble.XGBClassifier
bigframes.ml.ensemble.XGBClassifier.__init__
__init__(
n_estimators=1,
*,
booster="gbtree",
dart_normalized_type="tree",
tree_method="auto",
min_tree_child_weight=1,
colsample_bytree=1.0,
colsample_bylevel=1.0,
colsample_bynode=1.0,
gamma=0.0,
max_depth=6,
subsample=1.0,
reg_alpha=0.0,
reg_lambda=1.0,
learning_rate=0.3,
max_iterations=20,
tol=0.01,
enable_global_explain=False,
xgboost_version="0.9"
)API documentation for __init__ method.
See more: bigframes.ml.ensemble.XGBClassifier.init
bigframes.ml.ensemble.XGBClassifier.fit
fit(X, y, X_eval=None, y_eval=None)Fit gradient boosting model.
See more: bigframes.ml.ensemble.XGBClassifier.fit
bigframes.ml.ensemble.XGBClassifier.get_params
get_params(deep=True)Get parameters for this estimator.
bigframes.ml.ensemble.XGBClassifier.predict
predict(X)Predict using the XGB model.
bigframes.ml.ensemble.XGBClassifier.register
register(vertex_ai_model_id=None)Register the model to Vertex AI.
bigframes.ml.ensemble.XGBClassifier.score
score(X, y)Return the mean accuracy on the given test data and labels.
bigframes.ml.ensemble.XGBClassifier.to_gbq
to_gbq(model_name, replace=False)Save the model to BigQuery.
bigframes.ml.ensemble.XGBRegressor
XGBRegressor(
n_estimators: int = 1,
*,
booster: typing.Literal["gbtree", "dart"] = "gbtree",
dart_normalized_type: typing.Literal["tree", "forest"] = "tree",
tree_method: typing.Literal["auto", "exact", "approx", "hist"] = "auto",
min_tree_child_weight: int = 1,
colsample_bytree: float = 1.0,
colsample_bylevel: float = 1.0,
colsample_bynode: float = 1.0,
gamma: float = 0.0,
max_depth: int = 6,
subsample: float = 1.0,
reg_alpha: float = 0.0,
reg_lambda: float = 1.0,
learning_rate: float = 0.3,
max_iterations: int = 20,
tol: float = 0.01,
enable_global_explain: bool = False,
xgboost_version: typing.Literal["0.9", "1.1"] = "0.9"
)XGBoost regression model.
See more: bigframes.ml.ensemble.XGBRegressor
bigframes.ml.ensemble.XGBRegressor.__init__
__init__(
n_estimators=1,
*,
booster="gbtree",
dart_normalized_type="tree",
tree_method="auto",
min_tree_child_weight=1,
colsample_bytree=1.0,
colsample_bylevel=1.0,
colsample_bynode=1.0,
gamma=0.0,
max_depth=6,
subsample=1.0,
reg_alpha=0.0,
reg_lambda=1.0,
learning_rate=0.3,
max_iterations=20,
tol=0.01,
enable_global_explain=False,
xgboost_version="0.9"
)API documentation for __init__ method.
See more: bigframes.ml.ensemble.XGBRegressor.init
bigframes.ml.ensemble.XGBRegressor.fit
fit(X, y, X_eval=None, y_eval=None)Fit gradient boosting model.
See more: bigframes.ml.ensemble.XGBRegressor.fit
bigframes.ml.ensemble.XGBRegressor.get_params
get_params(deep=True)Get parameters for this estimator.
bigframes.ml.ensemble.XGBRegressor.predict
predict(X)Predict using the XGB model.
bigframes.ml.ensemble.XGBRegressor.register
register(vertex_ai_model_id=None)Register the model to Vertex AI.
bigframes.ml.ensemble.XGBRegressor.score
score(X, y)Calculate evaluation metrics of the model.
See more: bigframes.ml.ensemble.XGBRegressor.score
bigframes.ml.ensemble.XGBRegressor.to_gbq
to_gbq(model_name, replace=False)Save the model to BigQuery.
bigframes.ml.forecasting.ARIMAPlus
ARIMAPlus(
*,
horizon: int = 1000,
auto_arima: bool = True,
auto_arima_max_order: typing.Optional[int] = None,
auto_arima_min_order: typing.Optional[int] = None,
data_frequency: str = "auto_frequency",
include_drift: bool = False,
holiday_region: typing.Optional[str] = None,
clean_spikes_and_dips: bool = True,
adjust_step_changes: bool = True,
forecast_limit_lower_bound: typing.Optional[float] = None,
forecast_limit_upper_bound: typing.Optional[float] = None,
time_series_length_fraction: typing.Optional[float] = None,
min_time_series_length: typing.Optional[int] = None,
max_time_series_length: typing.Optional[int] = None,
trend_smoothing_window_size: typing.Optional[int] = None,
decompose_time_series: bool = True
)Time Series ARIMA Plus model.
See more: bigframes.ml.forecasting.ARIMAPlus
bigframes.ml.forecasting.ARIMAPlus.__init__
__init__(
*,
horizon=1000,
auto_arima=True,
auto_arima_max_order=None,
auto_arima_min_order=None,
data_frequency="auto_frequency",
include_drift=False,
holiday_region=None,
clean_spikes_and_dips=True,
adjust_step_changes=True,
forecast_limit_lower_bound=None,
forecast_limit_upper_bound=None,
time_series_length_fraction=None,
min_time_series_length=None,
max_time_series_length=None,
trend_smoothing_window_size=None,
decompose_time_series=True
)API documentation for __init__ method.
See more: bigframes.ml.forecasting.ARIMAPlus.init
bigframes.ml.forecasting.ARIMAPlus.detect_anomalies
detect_anomalies(X, *, anomaly_prob_threshold=0.95)Detect the anomaly data points of the input.
See more: bigframes.ml.forecasting.ARIMAPlus.detect_anomalies
bigframes.ml.forecasting.ARIMAPlus.fit
fit(X, y, transforms=None, id_col=None)API documentation for fit method.
See more: bigframes.ml.forecasting.ARIMAPlus.fit
bigframes.ml.forecasting.ARIMAPlus.get_params
get_params(deep=True)Get parameters for this estimator.
bigframes.ml.forecasting.ARIMAPlus.predict
predict(X=None, *, horizon=3, confidence_level=0.95)Forecast time series at future horizon.
bigframes.ml.forecasting.ARIMAPlus.predict_explain
predict_explain(X=None, *, horizon=3, confidence_level=0.95)Explain Forecast time series at future horizon.
See more: bigframes.ml.forecasting.ARIMAPlus.predict_explain
bigframes.ml.forecasting.ARIMAPlus.register
register(vertex_ai_model_id=None)Register the model to Vertex AI.
bigframes.ml.forecasting.ARIMAPlus.score
score(X, y, id_col=None)Calculate evaluation metrics of the model.
See more: bigframes.ml.forecasting.ARIMAPlus.score
bigframes.ml.forecasting.ARIMAPlus.summary
summary(show_all_candidate_models=False)Summary of the evaluation metrics of the time series model.
bigframes.ml.forecasting.ARIMAPlus.to_gbq
to_gbq(model_name, replace=False)Save the model to BigQuery.
bigframes.ml.imported.ONNXModel
ONNXModel(
model_path: str, *, session: typing.Optional[bigframes.session.Session] = None
)Imported Open Neural Network Exchange (ONNX) model.
See more: bigframes.ml.imported.ONNXModel
bigframes.ml.imported.ONNXModel.__init__
__init__(model_path, *, session=None)API documentation for __init__ method.
See more: bigframes.ml.imported.ONNXModel.init
bigframes.ml.imported.ONNXModel.get_params
get_params(deep=True)Get parameters for this estimator.
bigframes.ml.imported.ONNXModel.predict
predict(X)Predict the result from input DataFrame.
See more: bigframes.ml.imported.ONNXModel.predict
bigframes.ml.imported.ONNXModel.register
register(vertex_ai_model_id=None)Register the model to Vertex AI.
See more: bigframes.ml.imported.ONNXModel.register
bigframes.ml.imported.ONNXModel.to_gbq
to_gbq(model_name, replace=False)Save the model to BigQuery.
See more: bigframes.ml.imported.ONNXModel.to_gbq
bigframes.ml.imported.TensorFlowModel
TensorFlowModel(
model_path: str, *, session: typing.Optional[bigframes.session.Session] = None
)Imported TensorFlow model.
See more: bigframes.ml.imported.TensorFlowModel
bigframes.ml.imported.TensorFlowModel.__init__
__init__(model_path, *, session=None)API documentation for __init__ method.
bigframes.ml.imported.TensorFlowModel.get_params
get_params(deep=True)Get parameters for this estimator.
bigframes.ml.imported.TensorFlowModel.predict
predict(X)Predict the result from input DataFrame.
bigframes.ml.imported.TensorFlowModel.register
register(vertex_ai_model_id=None)Register the model to Vertex AI.
bigframes.ml.imported.TensorFlowModel.to_gbq
to_gbq(model_name, replace=False)Save the model to BigQuery.
bigframes.ml.imported.XGBoostModel
XGBoostModel(
model_path: str,
*,
input: typing.Optional[typing.Mapping[str, str]] = None,
output: typing.Optional[typing.Mapping[str, str]] = None,
session: typing.Optional[bigframes.session.Session] = None
)Imported XGBoost model.
See more: bigframes.ml.imported.XGBoostModel
bigframes.ml.imported.XGBoostModel.__init__
__init__(model_path, *, input=None, output=None, session=None)API documentation for __init__ method.
See more: bigframes.ml.imported.XGBoostModel.init
bigframes.ml.imported.XGBoostModel.get_params
get_params(deep=True)Get parameters for this estimator.
bigframes.ml.imported.XGBoostModel.predict
predict(X)Predict the result from input DataFrame.
bigframes.ml.imported.XGBoostModel.register
register(vertex_ai_model_id=None)Register the model to Vertex AI.
bigframes.ml.imported.XGBoostModel.to_gbq
to_gbq(model_name, replace=False)Save the model to BigQuery.
bigframes.ml.impute.SimpleImputer
SimpleImputer(strategy: typing.Literal["mean", "median", "most_frequent"] = "mean")Univariate imputer for completing missing values with simple strategies.
See more: bigframes.ml.impute.SimpleImputer
bigframes.ml.impute.SimpleImputer.__init__
__init__(strategy="mean")API documentation for __init__ method.
See more: bigframes.ml.impute.SimpleImputer.init
bigframes.ml.impute.SimpleImputer.fit
fit(X, y=None)Fit the imputer on X.
See more: bigframes.ml.impute.SimpleImputer.fit
bigframes.ml.impute.SimpleImputer.fit_transform
fit_transform(X, y=None)Fit to data, then transform it.
bigframes.ml.impute.SimpleImputer.get_params
get_params(deep=True)Get parameters for this estimator.
bigframes.ml.impute.SimpleImputer.to_gbq
to_gbq(model_name, replace=False)Save the transformer as a BigQuery model.
See more: bigframes.ml.impute.SimpleImputer.to_gbq
bigframes.ml.impute.SimpleImputer.transform
transform(X)Impute all missing values in X.
bigframes.ml.linear_model.LinearRegression
LinearRegression(
*,
optimize_strategy: typing.Literal[
"auto_strategy", "batch_gradient_descent", "normal_equation"
] = "auto_strategy",
fit_intercept: bool = True,
l1_reg: typing.Optional[float] = None,
l2_reg: float = 0.0,
max_iterations: int = 20,
warm_start: bool = False,
learning_rate: typing.Optional[float] = None,
learning_rate_strategy: typing.Literal["line_search", "constant"] = "line_search",
tol: float = 0.01,
ls_init_learning_rate: typing.Optional[float] = None,
calculate_p_values: bool = False,
enable_global_explain: bool = False
)Ordinary least squares Linear Regression.
bigframes.ml.linear_model.LinearRegression.__init__
__init__(
*,
optimize_strategy="auto_strategy",
fit_intercept=True,
l1_reg=None,
l2_reg=0.0,
max_iterations=20,
warm_start=False,
learning_rate=None,
learning_rate_strategy="line_search",
tol=0.01,
ls_init_learning_rate=None,
calculate_p_values=False,
enable_global_explain=False
)API documentation for __init__ method.
bigframes.ml.linear_model.LinearRegression.fit
fit(X, y, X_eval=None, y_eval=None)Fit linear model.
bigframes.ml.linear_model.LinearRegression.get_params
get_params(deep=True)Get parameters for this estimator.
See more: bigframes.ml.linear_model.LinearRegression.get_params
bigframes.ml.linear_model.LinearRegression.global_explain
global_explain()Provide explanations for an entire linear regression model.
See more: bigframes.ml.linear_model.LinearRegression.global_explain
bigframes.ml.linear_model.LinearRegression.predict
predict(X)Predict using the linear model.
See more: bigframes.ml.linear_model.LinearRegression.predict
bigframes.ml.linear_model.LinearRegression.predict_explain
predict_explain(X, *, top_k_features=5)Explain predictions for a linear regression model.
See more: bigframes.ml.linear_model.LinearRegression.predict_explain
bigframes.ml.linear_model.LinearRegression.register
register(vertex_ai_model_id=None)Register the model to Vertex AI.
See more: bigframes.ml.linear_model.LinearRegression.register
bigframes.ml.linear_model.LinearRegression.score
score(X, y)Calculate evaluation metrics of the model.
bigframes.ml.linear_model.LinearRegression.to_gbq
to_gbq(model_name, replace=False)Save the model to BigQuery.
bigframes.ml.linear_model.LogisticRegression
LogisticRegression(
*,
optimize_strategy: typing.Literal[
"auto_strategy", "batch_gradient_descent"
] = "auto_strategy",
fit_intercept: bool = True,
l1_reg: typing.Optional[float] = None,
l2_reg: float = 0.0,
max_iterations: int = 20,
warm_start: bool = False,
learning_rate: typing.Optional[float] = None,
learning_rate_strategy: typing.Literal["line_search", "constant"] = "line_search",
tol: float = 0.01,
ls_init_learning_rate: typing.Optional[float] = None,
calculate_p_values: bool = False,
enable_global_explain: bool = False,
class_weight: typing.Optional[
typing.Union[typing.Literal["balanced"], typing.Dict[str, float]]
] = None
)Logistic Regression (aka logit, MaxEnt) classifier.
bigframes.ml.linear_model.LogisticRegression.__init__
__init__(
*,
optimize_strategy="auto_strategy",
fit_intercept=True,
l1_reg=None,
l2_reg=0.0,
max_iterations=20,
warm_start=False,
learning_rate=None,
learning_rate_strategy="line_search",
tol=0.01,
ls_init_learning_rate=None,
calculate_p_values=False,
enable_global_explain=False,
class_weight=None
)API documentation for __init__ method.
bigframes.ml.linear_model.LogisticRegression.fit
fit(X, y, X_eval=None, y_eval=None)Fit the model according to the given training data.
bigframes.ml.linear_model.LogisticRegression.get_params
get_params(deep=True)Get parameters for this estimator.
See more: bigframes.ml.linear_model.LogisticRegression.get_params
bigframes.ml.linear_model.LogisticRegression.predict
predict(X)Predict class labels for samples in X.
See more: bigframes.ml.linear_model.LogisticRegression.predict
bigframes.ml.linear_model.LogisticRegression.predict_explain
predict_explain(X, *, top_k_features=5)Explain predictions for a logistic regression model.
See more: bigframes.ml.linear_model.LogisticRegression.predict_explain
bigframes.ml.linear_model.LogisticRegression.register
register(vertex_ai_model_id=None)Register the model to Vertex AI.
See more: bigframes.ml.linear_model.LogisticRegression.register
bigframes.ml.linear_model.LogisticRegression.score
score(X, y)Return the mean accuracy on the given test data and labels.
See more: bigframes.ml.linear_model.LogisticRegression.score
bigframes.ml.linear_model.LogisticRegression.to_gbq
to_gbq(model_name, replace=False)Save the model to BigQuery.
See more: bigframes.ml.linear_model.LogisticRegression.to_gbq
bigframes.ml.llm.Claude3TextGenerator
Claude3TextGenerator(
*,
model_name: typing.Optional[
typing.Literal[
"claude-3-sonnet", "claude-3-haiku", "claude-3-5-sonnet", "claude-3-opus"
]
] = None,
session: typing.Optional[bigframes.session.Session] = None,
connection_name: typing.Optional[str] = None
)Claude3 text generator LLM model.
See more: bigframes.ml.llm.Claude3TextGenerator
bigframes.ml.llm.Claude3TextGenerator.__init__
__init__(*, model_name=None, session=None, connection_name=None)API documentation for __init__ method.
bigframes.ml.llm.Claude3TextGenerator.get_params
get_params(deep=True)Get parameters for this estimator.
bigframes.ml.llm.Claude3TextGenerator.predict
predict(X, *, max_output_tokens=128, top_k=40, top_p=0.95, max_retries=0)Predict the result from input DataFrame.
bigframes.ml.llm.Claude3TextGenerator.to_gbq
to_gbq(model_name, replace=False)Save the model to BigQuery.
bigframes.ml.llm.GeminiTextGenerator
GeminiTextGenerator(
*,
model_name: typing.Optional[
typing.Literal[
"gemini-1.5-pro-preview-0514",
"gemini-1.5-flash-preview-0514",
"gemini-1.5-pro-001",
"gemini-1.5-pro-002",
"gemini-1.5-flash-001",
"gemini-1.5-flash-002",
"gemini-2.0-flash-exp",
"gemini-2.0-flash-001",
"gemini-2.0-flash-lite-001",
"gemini-2.5-pro",
"gemini-2.5-flash",
"gemini-2.5-flash-lite",
]
] = None,
session: typing.Optional[bigframes.session.Session] = None,
connection_name: typing.Optional[str] = None,
max_iterations: int = 300
)Gemini text generator LLM model.
See more: bigframes.ml.llm.GeminiTextGenerator
bigframes.ml.llm.GeminiTextGenerator.__init__
__init__(
*, model_name=None, session=None, connection_name=None, max_iterations=300
)API documentation for __init__ method.
bigframes.ml.llm.GeminiTextGenerator.fit
fit(X, y)Fine tune GeminiTextGenerator model.
See more: bigframes.ml.llm.GeminiTextGenerator.fit
bigframes.ml.llm.GeminiTextGenerator.get_params
get_params(deep=True)Get parameters for this estimator.
bigframes.ml.llm.GeminiTextGenerator.predict
predict(
X,
*,
temperature=0.9,
max_output_tokens=8192,
top_k=40,
top_p=1.0,
ground_with_google_search=False,
max_retries=0,
prompt=None,
output_schema=None
)Predict the result from input DataFrame.
bigframes.ml.llm.GeminiTextGenerator.score
score(X, y, task_type="text_generation")Calculate evaluation metrics of the model.
bigframes.ml.llm.GeminiTextGenerator.to_gbq
to_gbq(model_name, replace=False)Save the model to BigQuery.
bigframes.ml.llm.MultimodalEmbeddingGenerator
MultimodalEmbeddingGenerator(
*,
model_name: typing.Optional[typing.Literal["multimodalembedding@001"]] = None,
session: typing.Optional[bigframes.session.Session] = None,
connection_name: typing.Optional[str] = None
)Multimodal embedding generator LLM model.
bigframes.ml.llm.MultimodalEmbeddingGenerator.__init__
__init__(*, model_name=None, session=None, connection_name=None)API documentation for __init__ method.
See more: bigframes.ml.llm.MultimodalEmbeddingGenerator.init
bigframes.ml.llm.MultimodalEmbeddingGenerator.get_params
get_params(deep=True)Get parameters for this estimator.
See more: bigframes.ml.llm.MultimodalEmbeddingGenerator.get_params
bigframes.ml.llm.MultimodalEmbeddingGenerator.predict
predict(X, *, max_retries=0)Predict the result from input DataFrame.
See more: bigframes.ml.llm.MultimodalEmbeddingGenerator.predict
bigframes.ml.llm.MultimodalEmbeddingGenerator.to_gbq
to_gbq(model_name, replace=False)Save the model to BigQuery.
See more: bigframes.ml.llm.MultimodalEmbeddingGenerator.to_gbq
bigframes.ml.llm.TextEmbeddingGenerator
TextEmbeddingGenerator(
*,
model_name: typing.Optional[
typing.Literal[
"text-embedding-005",
"text-embedding-004",
"text-multilingual-embedding-002",
]
] = None,
session: typing.Optional[bigframes.session.Session] = None,
connection_name: typing.Optional[str] = None
)Text embedding generator LLM model.
See more: bigframes.ml.llm.TextEmbeddingGenerator
bigframes.ml.llm.TextEmbeddingGenerator.__init__
__init__(*, model_name=None, session=None, connection_name=None)API documentation for __init__ method.
bigframes.ml.llm.TextEmbeddingGenerator.get_params
get_params(deep=True)Get parameters for this estimator.
See more: bigframes.ml.llm.TextEmbeddingGenerator.get_params
bigframes.ml.llm.TextEmbeddingGenerator.predict
predict(X, *, max_retries=0)Predict the result from input DataFrame.
bigframes.ml.llm.TextEmbeddingGenerator.to_gbq
to_gbq(model_name, replace=False)Save the model to BigQuery.
bigframes.ml.model_selection.KFold
KFold(n_splits: int = 5, *, random_state: typing.Optional[int] = None)K-Fold cross-validator.
See more: bigframes.ml.model_selection.KFold
bigframes.ml.model_selection.KFold.__init__
__init__(n_splits=5, *, random_state=None)API documentation for __init__ method.
See more: bigframes.ml.model_selection.KFold.init
bigframes.ml.model_selection.KFold.get_n_splits
get_n_splits()Returns the number of splitting iterations in the cross-validator.
bigframes.ml.model_selection.KFold.split
split(X, y=None)Generate indices to split data into training and test set.
See more: bigframes.ml.model_selection.KFold.split
bigframes.ml.model_selection.chain
chain(*iterables) --> chain object.
See more: bigframes.ml.model_selection.chain
bigframes.ml.model_selection.chain.__init__
__init__()API documentation for __init__ method.
See more: bigframes.ml.model_selection.chain.init
bigframes.ml.model_selection.chain.from_iterable
from_iterable()Alternative chain() constructor taking a single iterable argument that evaluates lazily.
bigframes.ml.pipeline.Pipeline
Pipeline(steps: typing.List[typing.Tuple[str, bigframes.ml.base.BaseEstimator]])Pipeline of transforms with a final estimator.
See more: bigframes.ml.pipeline.Pipeline
bigframes.ml.pipeline.Pipeline.__init__
__init__(steps)API documentation for __init__ method.
See more: bigframes.ml.pipeline.Pipeline.init
bigframes.ml.pipeline.Pipeline.fit
fit(X, y=None)Fit the model.
See more: bigframes.ml.pipeline.Pipeline.fit
bigframes.ml.pipeline.Pipeline.get_params
get_params(deep=True)Get parameters for this estimator.
bigframes.ml.pipeline.Pipeline.predict
predict(X)API documentation for predict method.
See more: bigframes.ml.pipeline.Pipeline.predict
bigframes.ml.pipeline.Pipeline.score
score(X, y=None)API documentation for score method.
See more: bigframes.ml.pipeline.Pipeline.score
bigframes.ml.pipeline.Pipeline.to_gbq
to_gbq(model_name, replace=False)Save the pipeline to BigQuery.
See more: bigframes.ml.pipeline.Pipeline.to_gbq
bigframes.ml.preprocessing.KBinsDiscretizer
KBinsDiscretizer(
n_bins: int = 5, strategy: typing.Literal["uniform", "quantile"] = "quantile"
)Bin continuous data into intervals.
bigframes.ml.preprocessing.KBinsDiscretizer.__init__
__init__(n_bins=5, strategy="quantile")API documentation for __init__ method.
bigframes.ml.preprocessing.KBinsDiscretizer.fit
fit(X, y=None)Fit the estimator.
bigframes.ml.preprocessing.KBinsDiscretizer.fit_transform
fit_transform(X, y=None)Fit to data, then transform it.
See more: bigframes.ml.preprocessing.KBinsDiscretizer.fit_transform
bigframes.ml.preprocessing.KBinsDiscretizer.get_params
get_params(deep=True)Get parameters for this estimator.
See more: bigframes.ml.preprocessing.KBinsDiscretizer.get_params
bigframes.ml.preprocessing.KBinsDiscretizer.to_gbq
to_gbq(model_name, replace=False)Save the transformer as a BigQuery model.
See more: bigframes.ml.preprocessing.KBinsDiscretizer.to_gbq
bigframes.ml.preprocessing.KBinsDiscretizer.transform
transform(X)Discretize the data.
See more: bigframes.ml.preprocessing.KBinsDiscretizer.transform
bigframes.ml.preprocessing.LabelEncoder
LabelEncoder(
min_frequency: typing.Optional[int] = None,
max_categories: typing.Optional[int] = None,
)Encode target labels with value between 0 and n_classes-1.
See more: bigframes.ml.preprocessing.LabelEncoder
bigframes.ml.preprocessing.LabelEncoder.__init__
__init__(min_frequency=None, max_categories=None)API documentation for __init__ method.
bigframes.ml.preprocessing.LabelEncoder.fit
fit(y)Fit label encoder.
bigframes.ml.preprocessing.LabelEncoder.fit_transform
fit_transform(y)API documentation for fit_transform method.
See more: bigframes.ml.preprocessing.LabelEncoder.fit_transform
bigframes.ml.preprocessing.LabelEncoder.get_params
get_params(deep=True)Get parameters for this estimator.
See more: bigframes.ml.preprocessing.LabelEncoder.get_params
bigframes.ml.preprocessing.LabelEncoder.to_gbq
to_gbq(model_name, replace=False)Save the transformer as a BigQuery model.
bigframes.ml.preprocessing.LabelEncoder.transform
transform(y)Transform y using label encoding.
bigframes.ml.preprocessing.MaxAbsScaler
MaxAbsScaler()Scale each feature by its maximum absolute value.
See more: bigframes.ml.preprocessing.MaxAbsScaler
bigframes.ml.preprocessing.MaxAbsScaler.__init__
__init__()API documentation for __init__ method.
bigframes.ml.preprocessing.MaxAbsScaler.fit
fit(X, y=None)Compute the maximum absolute value to be used for later scaling.
bigframes.ml.preprocessing.MaxAbsScaler.fit_transform
fit_transform(X, y=None)Fit to data, then transform it.
See more: bigframes.ml.preprocessing.MaxAbsScaler.fit_transform
bigframes.ml.preprocessing.MaxAbsScaler.get_params
get_params(deep=True)Get parameters for this estimator.
See more: bigframes.ml.preprocessing.MaxAbsScaler.get_params
bigframes.ml.preprocessing.MaxAbsScaler.to_gbq
to_gbq(model_name, replace=False)Save the transformer as a BigQuery model.
bigframes.ml.preprocessing.MaxAbsScaler.transform
transform(X)Scale the data.
bigframes.ml.preprocessing.MinMaxScaler
MinMaxScaler()Transform features by scaling each feature to a given range.
See more: bigframes.ml.preprocessing.MinMaxScaler
bigframes.ml.preprocessing.MinMaxScaler.__init__
__init__()API documentation for __init__ method.
bigframes.ml.preprocessing.MinMaxScaler.fit
fit(X, y=None)Compute the minimum and maximum to be used for later scaling.
bigframes.ml.preprocessing.MinMaxScaler.fit_transform
fit_transform(X, y=None)Fit to data, then transform it.
See more: bigframes.ml.preprocessing.MinMaxScaler.fit_transform
bigframes.ml.preprocessing.MinMaxScaler.get_params
get_params(deep=True)Get parameters for this estimator.
See more: bigframes.ml.preprocessing.MinMaxScaler.get_params
bigframes.ml.preprocessing.MinMaxScaler.to_gbq
to_gbq(model_name, replace=False)Save the transformer as a BigQuery model.
bigframes.ml.preprocessing.MinMaxScaler.transform
transform(X)Scale the data.
bigframes.ml.preprocessing.OneHotEncoder
OneHotEncoder(
drop: typing.Optional[typing.Literal["most_frequent"]] = None,
min_frequency: typing.Optional[int] = None,
max_categories: typing.Optional[int] = None,
)Encode categorical features as a one-hot format.
See more: bigframes.ml.preprocessing.OneHotEncoder
bigframes.ml.preprocessing.OneHotEncoder.__init__
__init__(drop=None, min_frequency=None, max_categories=None)API documentation for __init__ method.
bigframes.ml.preprocessing.OneHotEncoder.fit
fit(X, y=None)Fit OneHotEncoder to X.
bigframes.ml.preprocessing.OneHotEncoder.fit_transform
fit_transform(X, y=None)API documentation for fit_transform method.
See more: bigframes.ml.preprocessing.OneHotEncoder.fit_transform
bigframes.ml.preprocessing.OneHotEncoder.get_params
get_params(deep=True)Get parameters for this estimator.
See more: bigframes.ml.preprocessing.OneHotEncoder.get_params
bigframes.ml.preprocessing.OneHotEncoder.to_gbq
to_gbq(model_name, replace=False)Save the transformer as a BigQuery model.
bigframes.ml.preprocessing.OneHotEncoder.transform
transform(X)Transform X using one-hot encoding.
See more: bigframes.ml.preprocessing.OneHotEncoder.transform
bigframes.ml.preprocessing.PolynomialFeatures
PolynomialFeatures(degree: int = 2)Generate polynomial and interaction features.
bigframes.ml.preprocessing.PolynomialFeatures.__init__
__init__(degree=2)API documentation for __init__ method.
See more: bigframes.ml.preprocessing.PolynomialFeatures.init
bigframes.ml.preprocessing.PolynomialFeatures.fit
fit(X, y=None)Compute number of output features.
bigframes.ml.preprocessing.PolynomialFeatures.fit_transform
fit_transform(X, y=None)Fit to data, then transform it.
See more: bigframes.ml.preprocessing.PolynomialFeatures.fit_transform
bigframes.ml.preprocessing.PolynomialFeatures.get_params
get_params(deep=True)Get parameters for this estimator.
See more: bigframes.ml.preprocessing.PolynomialFeatures.get_params
bigframes.ml.preprocessing.PolynomialFeatures.to_gbq
to_gbq(model_name, replace=False)Save the transformer as a BigQuery model.
See more: bigframes.ml.preprocessing.PolynomialFeatures.to_gbq
bigframes.ml.preprocessing.PolynomialFeatures.transform
transform(X)Transform data to polynomial features.
See more: bigframes.ml.preprocessing.PolynomialFeatures.transform
bigframes.ml.preprocessing.StandardScaler
StandardScaler()Standardize features by removing the mean and scaling to unit variance.
bigframes.ml.preprocessing.StandardScaler.__init__
__init__()API documentation for __init__ method.
bigframes.ml.preprocessing.StandardScaler.fit
fit(X, y=None)Compute the mean and std to be used for later scaling.
bigframes.ml.preprocessing.StandardScaler.fit_transform
fit_transform(X, y=None)Fit to data, then transform it.
See more: bigframes.ml.preprocessing.StandardScaler.fit_transform
bigframes.ml.preprocessing.StandardScaler.get_params
get_params(deep=True)Get parameters for this estimator.
See more: bigframes.ml.preprocessing.StandardScaler.get_params
bigframes.ml.preprocessing.StandardScaler.to_gbq
to_gbq(model_name, replace=False)Save the transformer as a BigQuery model.
bigframes.ml.preprocessing.StandardScaler.transform
transform(X)Perform standardization by centering and scaling.
See more: bigframes.ml.preprocessing.StandardScaler.transform
bigframes.ml.remote.VertexAIModel
VertexAIModel(
endpoint: str,
input: typing.Mapping[str, str],
output: typing.Mapping[str, str],
*,
session: typing.Optional[bigframes.session.Session] = None,
connection_name: typing.Optional[str] = None
)Remote model from a Vertex AI HTTPS endpoint.
See more: bigframes.ml.remote.VertexAIModel
bigframes.ml.remote.VertexAIModel.__init__
__init__(endpoint, input, output, *, session=None, connection_name=None)API documentation for __init__ method.
See more: bigframes.ml.remote.VertexAIModel.init
bigframes.ml.remote.VertexAIModel.get_params
get_params(deep=True)Get parameters for this estimator.
bigframes.ml.remote.VertexAIModel.predict
predict(X)Predict the result from the input DataFrame.
bigframes.pandas.DataFrame
DataFrame(
data=None,
index: vendored_pandas_typing.Axes | None = None,
columns: vendored_pandas_typing.Axes | None = None,
dtype: typing.Optional[
bigframes.dtypes.DtypeString | bigframes.dtypes.Dtype
] = None,
copy: typing.Optional[bool] = None,
*,
session: typing.Optional[bigframes.session.Session] = None
)Two-dimensional, size-mutable, potentially heterogeneous tabular data.
See more: bigframes.pandas.DataFrame
bigframes.pandas.DataFrame.__init__
__init__(
data=None, index=None, columns=None, dtype=None, copy=None, *, session=None
)API documentation for __init__ method.
See more: bigframes.pandas.DataFrame.init
bigframes.pandas.DataFrame.abs
abs()Return a Series/DataFrame with absolute numeric value of each element.
See more: bigframes.pandas.DataFrame.abs
bigframes.pandas.DataFrame.add
add(other, axis="columns")Get addition of DataFrame and other, element-wise (binary operator +).
See more: bigframes.pandas.DataFrame.add
bigframes.pandas.DataFrame.add_prefix
add_prefix(prefix, axis=None)Prefix labels with string prefix.
See more: bigframes.pandas.DataFrame.add_prefix
bigframes.pandas.DataFrame.add_suffix
add_suffix(suffix, axis=None)Suffix labels with string suffix.
See more: bigframes.pandas.DataFrame.add_suffix
bigframes.pandas.DataFrame.agg
agg(func)Aggregate using one or more operations over columns.
See more: bigframes.pandas.DataFrame.agg
bigframes.pandas.DataFrame.aggregate
aggregate(func)Aggregate using one or more operations over columns.
See more: bigframes.pandas.DataFrame.aggregate
bigframes.pandas.DataFrame.align
align(other, join="outer", axis=None)Align two objects on their axes with the specified join method.
See more: bigframes.pandas.DataFrame.align
bigframes.pandas.DataFrame.all
all(axis=0, *, bool_only=False)Return whether all elements are True, potentially over an axis.
See more: bigframes.pandas.DataFrame.all
bigframes.pandas.DataFrame.any
any(*, axis=0, bool_only=False)Return whether any element is True, potentially over an axis.
See more: bigframes.pandas.DataFrame.any
bigframes.pandas.DataFrame.apply
apply(func, *, axis=0, args=(), **kwargs)Apply a function along an axis of the DataFrame.
See more: bigframes.pandas.DataFrame.apply
bigframes.pandas.DataFrame.applymap
applymap(func, na_action=None)Apply a function to a Dataframe elementwise.
See more: bigframes.pandas.DataFrame.applymap
bigframes.pandas.DataFrame.area
area(x=None, y=None, stacked=True, **kwargs)Draw a stacked area plot.
See more: bigframes.pandas.DataFrame.area
bigframes.pandas.DataFrame.assign
assign(**kwargs)Assign new columns to a DataFrame.
See more: bigframes.pandas.DataFrame.assign
bigframes.pandas.DataFrame.astype
astype(dtype, *, errors="raise")Cast a pandas object to a specified dtype dtype.
See more: bigframes.pandas.DataFrame.astype
bigframes.pandas.DataFrame.bar
bar(x=None, y=None, **kwargs)Draw a vertical bar plot.
See more: bigframes.pandas.DataFrame.bar
bigframes.pandas.DataFrame.bfill
bfill(*, limit=None)Fill NA/NaN values by using the next valid observation to fill the gap.
See more: bigframes.pandas.DataFrame.bfill
bigframes.pandas.DataFrame.cache
cache()Materializes the DataFrame to a temporary table.
See more: bigframes.pandas.DataFrame.cache
bigframes.pandas.DataFrame.combine
combine(other, func, fill_value=None, overwrite=True, *, how="outer")Perform column-wise combine with another DataFrame.
See more: bigframes.pandas.DataFrame.combine
bigframes.pandas.DataFrame.combine_first
combine_first(other)Update null elements with value in the same location in other.
See more: bigframes.pandas.DataFrame.combine_first
bigframes.pandas.DataFrame.copy
copy()Make a copy of this object's indices and data.
See more: bigframes.pandas.DataFrame.copy
bigframes.pandas.DataFrame.corr
corr(method="pearson", min_periods=None, numeric_only=False)Compute pairwise correlation of columns, excluding NA/null values.
See more: bigframes.pandas.DataFrame.corr
bigframes.pandas.DataFrame.corrwith
corrwith(other, *, numeric_only=False)Compute pairwise correlation.
See more: bigframes.pandas.DataFrame.corrwith
bigframes.pandas.DataFrame.count
count(*, numeric_only=False)Count non-NA cells for each column.
See more: bigframes.pandas.DataFrame.count
bigframes.pandas.DataFrame.cov
cov(*, numeric_only=False)Compute pairwise covariance of columns, excluding NA/null values.
See more: bigframes.pandas.DataFrame.cov
bigframes.pandas.DataFrame.cummax
cummax()Return cumulative maximum over columns.
See more: bigframes.pandas.DataFrame.cummax
bigframes.pandas.DataFrame.cummin
cummin()Return cumulative minimum over columns.
See more: bigframes.pandas.DataFrame.cummin
bigframes.pandas.DataFrame.cumprod
cumprod()Return cumulative product over columns.
See more: bigframes.pandas.DataFrame.cumprod
bigframes.pandas.DataFrame.cumsum
cumsum()Return cumulative sum over columns.
See more: bigframes.pandas.DataFrame.cumsum
bigframes.pandas.DataFrame.describe
describe(include=None)Generate descriptive statistics.
See more: bigframes.pandas.DataFrame.describe
bigframes.pandas.DataFrame.diff
diff(periods=1)First discrete difference of element.
See more: bigframes.pandas.DataFrame.diff
bigframes.pandas.DataFrame.div
div(other, axis="columns")Get floating division of DataFrame and other, element-wise (binary operator /).
See more: bigframes.pandas.DataFrame.div
bigframes.pandas.DataFrame.divide
divide(other, axis="columns")Get floating division of DataFrame and other, element-wise (binary operator /).
See more: bigframes.pandas.DataFrame.divide
bigframes.pandas.DataFrame.dot
dot(other)Compute the matrix multiplication between the DataFrame and other.
See more: bigframes.pandas.DataFrame.dot
bigframes.pandas.DataFrame.drop
Drop specified labels from columns.
See more: bigframes.pandas.DataFrame.drop
bigframes.pandas.DataFrame.drop_duplicates
drop_duplicates(subset=None, *, keep="first")Return DataFrame with duplicate rows removed.
bigframes.pandas.DataFrame.droplevel
droplevel(level, axis=0)Return DataFrame with requested index / column level(s) removed.
See more: bigframes.pandas.DataFrame.droplevel
bigframes.pandas.DataFrame.dropna
dropna(
*, axis=0, how="any", thresh=None, subset=None, inplace=False, ignore_index=False
)Remove missing values.
See more: bigframes.pandas.DataFrame.dropna
bigframes.pandas.DataFrame.duplicated
duplicated(subset=None, keep="first")Return boolean Series denoting duplicate rows.
See more: bigframes.pandas.DataFrame.duplicated
bigframes.pandas.DataFrame.eq
eq(other, axis="columns")Get equal to of DataFrame and other, element-wise (binary operator eq).
See more: bigframes.pandas.DataFrame.eq
bigframes.pandas.DataFrame.equals
equals(other)Test whether two objects contain the same elements.
See more: bigframes.pandas.DataFrame.equals
bigframes.pandas.DataFrame.eval
eval(expr)Evaluate a string describing operations on DataFrame columns.
See more: bigframes.pandas.DataFrame.eval
bigframes.pandas.DataFrame.expanding
expanding(min_periods=1)Provide expanding window calculations.
See more: bigframes.pandas.DataFrame.expanding
bigframes.pandas.DataFrame.explode
explode(column, *, ignore_index=False)Transform each element of an array to a row, replicating index values.
See more: bigframes.pandas.DataFrame.explode
bigframes.pandas.DataFrame.ffill
ffill(*, limit=None)Fill NA/NaN values by propagating the last valid observation to next valid.
See more: bigframes.pandas.DataFrame.ffill
bigframes.pandas.DataFrame.fillna
fillna(value=None)Fill NA (NULL in BigQuery) values using the specified method.
See more: bigframes.pandas.DataFrame.fillna
bigframes.pandas.DataFrame.filter
filter(items=None, like=None, regex=None, axis=None)Subset the dataframe rows or columns according to the specified index labels.
See more: bigframes.pandas.DataFrame.filter
bigframes.pandas.DataFrame.first_valid_index
first_valid_index()API documentation for first_valid_index method.
bigframes.pandas.DataFrame.floordiv
floordiv(other, axis="columns")Get integer division of DataFrame and other, element-wise (binary operator //).
See more: bigframes.pandas.DataFrame.floordiv
bigframes.pandas.DataFrame.from_dict
from_dict(data, orient="columns", dtype=None, columns=None)Construct DataFrame from dict of array-like or dicts.
See more: bigframes.pandas.DataFrame.from_dict
bigframes.pandas.DataFrame.from_records
from_records(
data, index=None, exclude=None, columns=None, coerce_float=False, nrows=None
)Convert structured or record ndarray to DataFrame.
See more: bigframes.pandas.DataFrame.from_records
bigframes.pandas.DataFrame.ge
ge(other, axis="columns")Get 'greater than or equal to' of DataFrame and other, element-wise (binary operator >=).
See more: bigframes.pandas.DataFrame.ge
bigframes.pandas.DataFrame.get
get(key, default=None)Get item from object for given key (ex: DataFrame column).
See more: bigframes.pandas.DataFrame.get
bigframes.pandas.DataFrame.groupby
groupby(by=None, *, level=None, as_index=True, dropna=True)Group DataFrame by columns.
See more: bigframes.pandas.DataFrame.groupby
bigframes.pandas.DataFrame.gt
gt(other, axis="columns")Get 'greater than' of DataFrame and other, element-wise (binary operator >).
See more: bigframes.pandas.DataFrame.gt
bigframes.pandas.DataFrame.head
head(n=5)Return the first n rows.
See more: bigframes.pandas.DataFrame.head
bigframes.pandas.DataFrame.hist
hist(by=None, bins=10, **kwargs)Draw one histogram of the DataFrame’s columns.
See more: bigframes.pandas.DataFrame.hist
bigframes.pandas.DataFrame.idxmax
idxmax()Return index of first occurrence of maximum over columns.
See more: bigframes.pandas.DataFrame.idxmax
bigframes.pandas.DataFrame.idxmin
idxmin()Return index of first occurrence of minimum over columns.
See more: bigframes.pandas.DataFrame.idxmin
bigframes.pandas.DataFrame.info
info(verbose=None, buf=None, max_cols=None, memory_usage=None, show_counts=None)Print a concise summary of a DataFrame.
See more: bigframes.pandas.DataFrame.info
bigframes.pandas.DataFrame.insert
insert(loc, column, value, allow_duplicates=False)Insert column into DataFrame at specified location.
See more: bigframes.pandas.DataFrame.insert
bigframes.pandas.DataFrame.interpolate
interpolate(method="linear")Fill NA (NULL in BigQuery) values using an interpolation method.
See more: bigframes.pandas.DataFrame.interpolate
bigframes.pandas.DataFrame.isin
isin(values)Whether each element in the DataFrame is contained in values.
See more: bigframes.pandas.DataFrame.isin
bigframes.pandas.DataFrame.isna
isna()Detect missing (NULL) values.
See more: bigframes.pandas.DataFrame.isna
bigframes.pandas.DataFrame.isnull
isnull()Detect missing (NULL) values.
See more: bigframes.pandas.DataFrame.isnull
bigframes.pandas.DataFrame.items
items()Iterate over (column name, Series) pairs.
See more: bigframes.pandas.DataFrame.items
bigframes.pandas.DataFrame.iterrows
iterrows()Iterate over DataFrame rows as (index, Series) pairs.
See more: bigframes.pandas.DataFrame.iterrows
bigframes.pandas.DataFrame.itertuples
itertuples(index=True, name="Pandas")Iterate over DataFrame rows as namedtuples.
See more: bigframes.pandas.DataFrame.itertuples
bigframes.pandas.DataFrame.join
join(other, on=None, how="left", lsuffix="", rsuffix="")Join columns of another DataFrame.
See more: bigframes.pandas.DataFrame.join
bigframes.pandas.DataFrame.keys
keys()Get the 'info axis'.
See more: bigframes.pandas.DataFrame.keys
bigframes.pandas.DataFrame.kurt
kurt(*, numeric_only=False)Return unbiased kurtosis over columns.
See more: bigframes.pandas.DataFrame.kurt
bigframes.pandas.DataFrame.kurtosis
kurtosis(*, numeric_only=False)Return unbiased kurtosis over columns.
See more: bigframes.pandas.DataFrame.kurtosis
bigframes.pandas.DataFrame.le
le(other, axis="columns")Get 'less than or equal to' of dataframe and other, element-wise (binary operator <=).
See more: bigframes.pandas.DataFrame.le
bigframes.pandas.DataFrame.line
line(x=None, y=None, **kwargs)Plot Series or DataFrame as lines.
See more: bigframes.pandas.DataFrame.line
bigframes.pandas.DataFrame.lt
lt(other, axis="columns")Get 'less than' of DataFrame and other, element-wise (binary operator <).
See more: bigframes.pandas.DataFrame.lt
bigframes.pandas.DataFrame.map
map(func, na_action=None)Apply a function to a Dataframe elementwise.
See more: bigframes.pandas.DataFrame.map
bigframes.pandas.DataFrame.mask
mask(cond, other=None)Replace values where the condition is False.
See more: bigframes.pandas.DataFrame.mask
bigframes.pandas.DataFrame.max
max(axis=0, *, numeric_only=False)Return the maximum of the values over the requested axis.
See more: bigframes.pandas.DataFrame.max
bigframes.pandas.DataFrame.mean
mean(axis=0, *, numeric_only=False)Return the mean of the values over the requested axis.
See more: bigframes.pandas.DataFrame.mean
bigframes.pandas.DataFrame.median
median(*, numeric_only=False, exact=True)Return the median of the values over colunms.
See more: bigframes.pandas.DataFrame.median
bigframes.pandas.DataFrame.melt
melt(id_vars=None, value_vars=None, var_name=None, value_name="value")Unpivot a DataFrame from wide to long format, optionally leaving identifiers set.
See more: bigframes.pandas.DataFrame.melt
bigframes.pandas.DataFrame.memory_usage
memory_usage(index=True)Return the memory usage of each column in bytes.
See more: bigframes.pandas.DataFrame.memory_usage
bigframes.pandas.DataFrame.merge
merge(
right,
how="inner",
on=None,
*,
left_on=None,
right_on=None,
left_index=False,
right_index=False,
sort=False,
suffixes=("_x", "_y")
)Merge DataFrame objects with a database-style join.
See more: bigframes.pandas.DataFrame.merge
bigframes.pandas.DataFrame.min
min(axis=0, *, numeric_only=False)Return the minimum of the values over the requested axis.
See more: bigframes.pandas.DataFrame.min
bigframes.pandas.DataFrame.mod
mod(other, axis="columns")Get modulo of DataFrame and other, element-wise (binary operator %).
See more: bigframes.pandas.DataFrame.mod
bigframes.pandas.DataFrame.mul
mul(other, axis="columns")Get multiplication of DataFrame and other, element-wise (binary operator *).
See more: bigframes.pandas.DataFrame.mul
bigframes.pandas.DataFrame.multiply
multiply(other, axis="columns")Get multiplication of DataFrame and other, element-wise (binary operator *).
See more: bigframes.pandas.DataFrame.multiply
bigframes.pandas.DataFrame.ne
ne(other, axis="columns")Get not equal to of DataFrame and other, element-wise (binary operator ne).
See more: bigframes.pandas.DataFrame.ne
bigframes.pandas.DataFrame.nlargest
nlargest(n, columns, keep="first")Return the first n rows ordered by columns in descending order.
See more: bigframes.pandas.DataFrame.nlargest
bigframes.pandas.DataFrame.notna
notna()Detect existing (non-missing) values.
See more: bigframes.pandas.DataFrame.notna
bigframes.pandas.DataFrame.notnull
notnull()Detect existing (non-missing) values.
See more: bigframes.pandas.DataFrame.notnull
bigframes.pandas.DataFrame.nsmallest
nsmallest(n, columns, keep="first")Return the first n rows ordered by columns in ascending order.
See more: bigframes.pandas.DataFrame.nsmallest
bigframes.pandas.DataFrame.nunique
nunique()Count number of distinct elements in each column.
See more: bigframes.pandas.DataFrame.nunique
bigframes.pandas.DataFrame.pct_change
pct_change(periods=1)Fractional change between the current and a prior element.
See more: bigframes.pandas.DataFrame.pct_change
bigframes.pandas.DataFrame.peek
peek(n=5, *, force=True, allow_large_results=None)Preview n arbitrary rows from the dataframe.
See more: bigframes.pandas.DataFrame.peek
bigframes.pandas.DataFrame.pipe
pipe(func, *args, **kwargs)Apply chainable functions that expect Series or DataFrames.
See more: bigframes.pandas.DataFrame.pipe
bigframes.pandas.DataFrame.pivot
pivot(*, columns, index=None, values=None)Return reshaped DataFrame organized by given index / column values.
See more: bigframes.pandas.DataFrame.pivot
bigframes.pandas.DataFrame.pivot_table
pivot_table(
values=None,
index=None,
columns=None,
aggfunc="mean",
fill_value=None,
margins=False,
dropna=True,
margins_name="All",
observed=False,
sort=True,
)Create a spreadsheet-style pivot table as a DataFrame.
See more: bigframes.pandas.DataFrame.pivot_table
bigframes.pandas.DataFrame.pow
pow(other, axis="columns")Get Exponential power of dataframe and other, element-wise (binary operator **).
See more: bigframes.pandas.DataFrame.pow
bigframes.pandas.DataFrame.prod
prod(axis=0, *, numeric_only=False)Return the product of the values over the requested axis.
See more: bigframes.pandas.DataFrame.prod
bigframes.pandas.DataFrame.product
product(axis=0, *, numeric_only=False)Return the product of the values over the requested axis.
See more: bigframes.pandas.DataFrame.product
bigframes.pandas.DataFrame.quantile
quantile(q=0.5, *, numeric_only=False)Return values at the given quantile over requested axis.
See more: bigframes.pandas.DataFrame.quantile
bigframes.pandas.DataFrame.query
query(expr)Query the columns of a DataFrame with a boolean expression.
See more: bigframes.pandas.DataFrame.query
bigframes.pandas.DataFrame.radd
radd(other, axis="columns")Get addition of DataFrame and other, element-wise (binary operator +).
See more: bigframes.pandas.DataFrame.radd
bigframes.pandas.DataFrame.rank
rank(
axis=0,
method="average",
numeric_only=False,
na_option="keep",
ascending=True,
pct=False,
)Compute numerical data ranks (1 through n) along axis.
See more: bigframes.pandas.DataFrame.rank
bigframes.pandas.DataFrame.rdiv
rdiv(other, axis="columns")Get floating division of DataFrame and other, element-wise (binary operator /).
See more: bigframes.pandas.DataFrame.rdiv
bigframes.pandas.DataFrame.reindex
reindex(labels=None, *, index=None, columns=None, axis=None, validate=None)Conform DataFrame to new index with optional filling logic.
See more: bigframes.pandas.DataFrame.reindex
bigframes.pandas.DataFrame.reindex_like
reindex_like(other, *, validate=None)Return an object with matching indices as other object.
See more: bigframes.pandas.DataFrame.reindex_like
bigframes.pandas.DataFrame.rename
Rename columns.
See more: bigframes.pandas.DataFrame.rename
bigframes.pandas.DataFrame.rename_axis
Set the name of the axis for the index.
See more: bigframes.pandas.DataFrame.rename_axis
bigframes.pandas.DataFrame.reorder_levels
reorder_levels(order, axis=0)Rearrange index levels using input order.
bigframes.pandas.DataFrame.replace
replace(to_replace, value=None, *, regex=False)Replace values given in to_replace with value.
See more: bigframes.pandas.DataFrame.replace
bigframes.pandas.DataFrame.resample
resample(rule, *, closed=None, label=None, on=None, level=None, origin="start_day")Resample time-series data.
See more: bigframes.pandas.DataFrame.resample
bigframes.pandas.DataFrame.reset_index
Reset the index.
See more: bigframes.pandas.DataFrame.reset_index
bigframes.pandas.DataFrame.rfloordiv
rfloordiv(other, axis="columns")Get integer division of DataFrame and other, element-wise (binary operator //).
See more: bigframes.pandas.DataFrame.rfloordiv
bigframes.pandas.DataFrame.rmod
rmod(other, axis="columns")Get modulo of DataFrame and other, element-wise (binary operator %).
See more: bigframes.pandas.DataFrame.rmod
bigframes.pandas.DataFrame.rmul
rmul(other, axis="columns")Get multiplication of DataFrame and other, element-wise (binary operator *).
See more: bigframes.pandas.DataFrame.rmul
bigframes.pandas.DataFrame.rolling
rolling(window, min_periods=None, on=None, closed="right")Provide rolling window calculations.
See more: bigframes.pandas.DataFrame.rolling
bigframes.pandas.DataFrame.round
round(decimals=0)Round a DataFrame to a variable number of decimal places.
See more: bigframes.pandas.DataFrame.round
bigframes.pandas.DataFrame.rpow
rpow(other, axis="columns")Get Exponential power of dataframe and other, element-wise (binary operator rpow).
See more: bigframes.pandas.DataFrame.rpow
bigframes.pandas.DataFrame.rsub
rsub(other, axis="columns")Get subtraction of DataFrame and other, element-wise (binary operator -).
See more: bigframes.pandas.DataFrame.rsub
bigframes.pandas.DataFrame.rtruediv
rtruediv(other, axis="columns")Get floating division of DataFrame and other, element-wise (binary operator /).
See more: bigframes.pandas.DataFrame.rtruediv
bigframes.pandas.DataFrame.sample
sample(n=None, frac=None, *, random_state=None, sort="random")Return a random sample of items from an axis of object.
See more: bigframes.pandas.DataFrame.sample
bigframes.pandas.DataFrame.scatter
scatter(x=None, y=None, s=None, c=None, **kwargs)Create a scatter plot with varying marker point size and color.
See more: bigframes.pandas.DataFrame.scatter
bigframes.pandas.DataFrame.select_dtypes
select_dtypes(include=None, exclude=None)Return a subset of the DataFrame's columns based on the column dtypes.
See more: bigframes.pandas.DataFrame.select_dtypes
bigframes.pandas.DataFrame.set_index
set_index(keys, append=False, drop=True)Set the DataFrame index using existing columns.
See more: bigframes.pandas.DataFrame.set_index
bigframes.pandas.DataFrame.shift
shift(periods=1)Shift index by desired number of periods.
See more: bigframes.pandas.DataFrame.shift
bigframes.pandas.DataFrame.skew
skew(*, numeric_only=False)Return unbiased skew over columns.
See more: bigframes.pandas.DataFrame.skew
bigframes.pandas.DataFrame.sort_index
Sort object by labels (along an axis).
See more: bigframes.pandas.DataFrame.sort_index
bigframes.pandas.DataFrame.sort_values
Sort by the values along row axis.
See more: bigframes.pandas.DataFrame.sort_values
bigframes.pandas.DataFrame.stack
stack(level=-1)Stack the prescribed level(s) from columns to index.
See more: bigframes.pandas.DataFrame.stack
bigframes.pandas.DataFrame.std
std(axis=0, *, numeric_only=False)Return sample standard deviation over columns.
See more: bigframes.pandas.DataFrame.std
bigframes.pandas.DataFrame.sub
sub(other, axis="columns")Get subtraction of DataFrame and other, element-wise (binary operator -).
See more: bigframes.pandas.DataFrame.sub
bigframes.pandas.DataFrame.subtract
subtract(other, axis="columns")Get subtraction of DataFrame and other, element-wise (binary operator -).
See more: bigframes.pandas.DataFrame.subtract
bigframes.pandas.DataFrame.sum
sum(axis=0, *, numeric_only=False)Return the sum of the values over the requested axis.
See more: bigframes.pandas.DataFrame.sum
bigframes.pandas.DataFrame.swaplevel
swaplevel(i=-2, j=-1, axis=0)Swap levels i and j in a MultiIndex.
See more: bigframes.pandas.DataFrame.swaplevel
bigframes.pandas.DataFrame.tail
tail(n=5)Return the last n rows.
See more: bigframes.pandas.DataFrame.tail
bigframes.pandas.DataFrame.take
take(indices, axis=0, **kwargs)Return the elements in the given positional indices along an axis.
See more: bigframes.pandas.DataFrame.take
bigframes.pandas.DataFrame.to_arrow
to_arrow(*, ordered=True, allow_large_results=None)Write DataFrame to an Arrow table / record batch.
See more: bigframes.pandas.DataFrame.to_arrow
bigframes.pandas.DataFrame.to_csv
to_csv(
path_or_buf=None, sep=",", *, header=True, index=True, allow_large_results=None
)Write object to a comma-separated values (csv) file on Cloud Storage.
See more: bigframes.pandas.DataFrame.to_csv
bigframes.pandas.DataFrame.to_dict
to_dict(orient="dict", into=dict, *, allow_large_results=None, **kwargs)Convert the DataFrame to a dictionary.
See more: bigframes.pandas.DataFrame.to_dict
bigframes.pandas.DataFrame.to_excel
to_excel(excel_writer, sheet_name="Sheet1", *, allow_large_results=None, **kwargs)Write DataFrame to an Excel sheet.
See more: bigframes.pandas.DataFrame.to_excel
bigframes.pandas.DataFrame.to_gbq
to_gbq(
destination_table=None,
*,
if_exists=None,
index=True,
ordering_id=None,
clustering_columns=(),
labels={}
)Write a DataFrame to a BigQuery table.
See more: bigframes.pandas.DataFrame.to_gbq
bigframes.pandas.DataFrame.to_html
to_html(
buf=None,
columns=None,
col_space=None,
header=True,
index=True,
na_rep="NaN",
formatters=None,
float_format=None,
sparsify=None,
index_names=True,
justify=None,
max_rows=None,
max_cols=None,
show_dimensions=False,
decimal=".",
bold_rows=True,
classes=None,
escape=True,
notebook=False,
border=None,
table_id=None,
render_links=False,
encoding=None,
*,
allow_large_results=None
)Render a DataFrame as an HTML table.
See more: bigframes.pandas.DataFrame.to_html
bigframes.pandas.DataFrame.to_json
to_json(
path_or_buf=None, orient=None, *, lines=False, index=True, allow_large_results=None
)Convert the object to a JSON string, written to Cloud Storage.
See more: bigframes.pandas.DataFrame.to_json
bigframes.pandas.DataFrame.to_latex
to_latex(
buf=None,
columns=None,
header=True,
index=True,
*,
allow_large_results=None,
**kwargs
)Render object to a LaTeX tabular, longtable, or nested table.
See more: bigframes.pandas.DataFrame.to_latex
bigframes.pandas.DataFrame.to_markdown
to_markdown(buf=None, mode="wt", index=True, *, allow_large_results=None, **kwargs)Print DataFrame in Markdown-friendly format.
See more: bigframes.pandas.DataFrame.to_markdown
bigframes.pandas.DataFrame.to_numpy
to_numpy(
dtype=None,
copy=False,
na_value=_NoDefault.no_default,
*,
allow_large_results=None,
**kwargs
)Convert the DataFrame to a NumPy array.
See more: bigframes.pandas.DataFrame.to_numpy
bigframes.pandas.DataFrame.to_orc
to_orc(path=None, *, allow_large_results=None, **kwargs)Write a DataFrame to the ORC format.
See more: bigframes.pandas.DataFrame.to_orc
bigframes.pandas.DataFrame.to_pandas
Write DataFrame to pandas DataFrame.
See more: bigframes.pandas.DataFrame.to_pandas
bigframes.pandas.DataFrame.to_pandas_batches
to_pandas_batches(page_size=None, max_results=None, *, allow_large_results=None)Stream DataFrame results to an iterable of pandas DataFrame.
bigframes.pandas.DataFrame.to_parquet
to_parquet(
path=None, *, compression="snappy", index=True, allow_large_results=None
)Write a DataFrame to the binary Parquet format.
See more: bigframes.pandas.DataFrame.to_parquet
bigframes.pandas.DataFrame.to_pickle
to_pickle(path, *, allow_large_results=None, **kwargs)Pickle (serialize) object to file.
See more: bigframes.pandas.DataFrame.to_pickle
bigframes.pandas.DataFrame.to_records
to_records(
index=True, column_dtypes=None, index_dtypes=None, *, allow_large_results=None
)Convert DataFrame to a NumPy record array.
See more: bigframes.pandas.DataFrame.to_records
bigframes.pandas.DataFrame.to_string
to_string(
buf=None,
columns=None,
col_space=None,
header=True,
index=True,
na_rep="NaN",
formatters=None,
float_format=None,
sparsify=None,
index_names=True,
justify=None,
max_rows=None,
max_cols=None,
show_dimensions=False,
decimal=".",
line_width=None,
min_rows=None,
max_colwidth=None,
encoding=None,
*,
allow_large_results=None
)Render a DataFrame to a console-friendly tabular output.
See more: bigframes.pandas.DataFrame.to_string
bigframes.pandas.DataFrame.transpose
transpose()Transpose index and columns.
See more: bigframes.pandas.DataFrame.transpose
bigframes.pandas.DataFrame.truediv
truediv(other, axis="columns")Get floating division of DataFrame and other, element-wise (binary operator /).
See more: bigframes.pandas.DataFrame.truediv
bigframes.pandas.DataFrame.unstack
unstack(level=-1)Pivot a level of the (necessarily hierarchical) index labels.
See more: bigframes.pandas.DataFrame.unstack
bigframes.pandas.DataFrame.update
update(other, join="left", overwrite=True, filter_func=None)Modify in place using non-NA values from another DataFrame.
See more: bigframes.pandas.DataFrame.update
bigframes.pandas.DataFrame.value_counts
value_counts(subset=None, normalize=False, sort=True, ascending=False, dropna=True)Return a Series containing counts of unique rows in the DataFrame.
See more: bigframes.pandas.DataFrame.value_counts
bigframes.pandas.DataFrame.var
var(axis=0, *, numeric_only=False)Return unbiased variance over requested axis.
See more: bigframes.pandas.DataFrame.var
bigframes.pandas.DataFrame.where
where(cond, other=None)Replace values where the condition is False.
See more: bigframes.pandas.DataFrame.where
bigframes.pandas.DatetimeIndex
DatetimeIndex(data=None, dtype=None, *, name=None, session=None)Immutable sequence used for indexing and alignment with datetime-like values.
See more: bigframes.pandas.DatetimeIndex
bigframes.pandas.DatetimeIndex.__init__
__init__()API documentation for __init__ method.
See more: bigframes.pandas.DatetimeIndex.init
bigframes.pandas.DatetimeIndex.all
all()Return whether all elements are Truthy.
See more: bigframes.pandas.DatetimeIndex.all
bigframes.pandas.DatetimeIndex.any
any()Return whether any element is Truthy.
See more: bigframes.pandas.DatetimeIndex.any
bigframes.pandas.DatetimeIndex.argmax
argmax()Return int position of the largest value in the Series.
See more: bigframes.pandas.DatetimeIndex.argmax
bigframes.pandas.DatetimeIndex.argmin
argmin()Return int position of the smallest value in the series.
See more: bigframes.pandas.DatetimeIndex.argmin
bigframes.pandas.DatetimeIndex.astype
astype(dtype, *, errors="raise")Create an Index with values cast to dtypes.
See more: bigframes.pandas.DatetimeIndex.astype
bigframes.pandas.DatetimeIndex.copy
copy(name=None)Make a copy of this object.
See more: bigframes.pandas.DatetimeIndex.copy
bigframes.pandas.DatetimeIndex.drop
drop(labels)Make new Index with passed list of labels deleted.
See more: bigframes.pandas.DatetimeIndex.drop
bigframes.pandas.DatetimeIndex.drop_duplicates
drop_duplicates(*, keep="first")Return Index with duplicate values removed.
bigframes.pandas.DatetimeIndex.dropna
dropna(how="any")Return Index without NA/NaN values.
See more: bigframes.pandas.DatetimeIndex.dropna
bigframes.pandas.DatetimeIndex.fillna
fillna(value=None)Fill NA (NULL in BigQuery) values using the specified method.
See more: bigframes.pandas.DatetimeIndex.fillna
bigframes.pandas.DatetimeIndex.from_frame
from_frame(frame)Make a MultiIndex from a DataFrame.
bigframes.pandas.DatetimeIndex.get_level_values
get_level_values(level)Return an Index of values for requested level.
bigframes.pandas.DatetimeIndex.get_loc
get_loc(key)Get integer location, slice or boolean mask for requested label.
See more: bigframes.pandas.DatetimeIndex.get_loc
bigframes.pandas.DatetimeIndex.isin
isin(values)Return a boolean array where the index values are in values.
See more: bigframes.pandas.DatetimeIndex.isin
bigframes.pandas.DatetimeIndex.item
item()Return the first element of the underlying data as a Python scalar.
See more: bigframes.pandas.DatetimeIndex.item
bigframes.pandas.DatetimeIndex.max
max()Return the maximum value of the Index.
See more: bigframes.pandas.DatetimeIndex.max
bigframes.pandas.DatetimeIndex.min
min()Return the minimum value of the Index.
See more: bigframes.pandas.DatetimeIndex.min
bigframes.pandas.DatetimeIndex.nunique
nunique()Return number of unique elements in the object.
See more: bigframes.pandas.DatetimeIndex.nunique
bigframes.pandas.DatetimeIndex.rename
rename(name, *, inplace=False)Alter Index or MultiIndex name.
See more: bigframes.pandas.DatetimeIndex.rename
bigframes.pandas.DatetimeIndex.sort_values
sort_values(*, inplace=False, ascending=True, na_position="last")Return a sorted copy of the index.
bigframes.pandas.DatetimeIndex.to_list
to_list(*, allow_large_results=None)API documentation for to_list method.
See more: bigframes.pandas.DatetimeIndex.to_list
bigframes.pandas.DatetimeIndex.to_numpy
to_numpy(dtype=None, *, allow_large_results=None, **kwargs)A NumPy ndarray representing the values in this Series or Index.
See more: bigframes.pandas.DatetimeIndex.to_numpy
bigframes.pandas.DatetimeIndex.to_pandas
to_pandas(*, allow_large_results=None, dry_run=False)Gets the Index as a pandas Index.
See more: bigframes.pandas.DatetimeIndex.to_pandas
bigframes.pandas.DatetimeIndex.to_series
to_series(index=None, name=None)Create a Series with both index and values equal to the index keys.
See more: bigframes.pandas.DatetimeIndex.to_series
bigframes.pandas.DatetimeIndex.transpose
transpose()Return the transpose, which is by definition self.
See more: bigframes.pandas.DatetimeIndex.transpose
bigframes.pandas.DatetimeIndex.unique
unique(level=None)Returns unique values in the index.
See more: bigframes.pandas.DatetimeIndex.unique
bigframes.pandas.DatetimeIndex.value_counts
value_counts(normalize=False, sort=True, ascending=False, *, dropna=True)Return a Series containing counts of unique values.
bigframes.pandas.Index
Index(data=None, dtype=None, *, name=None, session=None)Immutable sequence used for indexing and alignment.
See more: bigframes.pandas.Index
bigframes.pandas.Index.__init__
__init__()API documentation for __init__ method.
See more: bigframes.pandas.Index.init
bigframes.pandas.Index.all
all()Return whether all elements are Truthy.
See more: bigframes.pandas.Index.all
bigframes.pandas.Index.any
any()Return whether any element is Truthy.
See more: bigframes.pandas.Index.any
bigframes.pandas.Index.argmax
argmax()Return int position of the largest value in the Series.
See more: bigframes.pandas.Index.argmax
bigframes.pandas.Index.argmin
argmin()Return int position of the smallest value in the series.
See more: bigframes.pandas.Index.argmin
bigframes.pandas.Index.astype
astype(dtype, *, errors="raise")Create an Index with values cast to dtypes.
See more: bigframes.pandas.Index.astype
bigframes.pandas.Index.copy
copy(name=None)Make a copy of this object.
See more: bigframes.pandas.Index.copy
bigframes.pandas.Index.drop
drop(labels)Make new Index with passed list of labels deleted.
See more: bigframes.pandas.Index.drop
bigframes.pandas.Index.drop_duplicates
drop_duplicates(*, keep="first")Return Index with duplicate values removed.
See more: bigframes.pandas.Index.drop_duplicates
bigframes.pandas.Index.dropna
dropna(how="any")Return Index without NA/NaN values.
See more: bigframes.pandas.Index.dropna
bigframes.pandas.Index.fillna
fillna(value=None)Fill NA (NULL in BigQuery) values using the specified method.
See more: bigframes.pandas.Index.fillna
bigframes.pandas.Index.from_frame
from_frame(frame)Make a MultiIndex from a DataFrame.
See more: bigframes.pandas.Index.from_frame
bigframes.pandas.Index.get_level_values
get_level_values(level)Return an Index of values for requested level.
See more: bigframes.pandas.Index.get_level_values
bigframes.pandas.Index.get_loc
get_loc(key)Get integer location, slice or boolean mask for requested label.
See more: bigframes.pandas.Index.get_loc
bigframes.pandas.Index.isin
isin(values)Return a boolean array where the index values are in values.
See more: bigframes.pandas.Index.isin
bigframes.pandas.Index.item
item()Return the first element of the underlying data as a Python scalar.
See more: bigframes.pandas.Index.item
bigframes.pandas.Index.max
max()Return the maximum value of the Index.
See more: bigframes.pandas.Index.max
bigframes.pandas.Index.min
min()Return the minimum value of the Index.
See more: bigframes.pandas.Index.min
bigframes.pandas.Index.nunique
nunique()Return number of unique elements in the object.
See more: bigframes.pandas.Index.nunique
bigframes.pandas.Index.rename
Alter Index or MultiIndex name.
See more: bigframes.pandas.Index.rename
bigframes.pandas.Index.sort_values
sort_values(*, inplace=False, ascending=True, na_position="last")Return a sorted copy of the index.
See more: bigframes.pandas.Index.sort_values
bigframes.pandas.Index.to_list
to_list(*, allow_large_results=None)API documentation for to_list method.
See more: bigframes.pandas.Index.to_list
bigframes.pandas.Index.to_numpy
to_numpy(dtype=None, *, allow_large_results=None, **kwargs)A NumPy ndarray representing the values in this Series or Index.
See more: bigframes.pandas.Index.to_numpy
bigframes.pandas.Index.to_pandas
Gets the Index as a pandas Index.
See more: bigframes.pandas.Index.to_pandas
bigframes.pandas.Index.to_series
to_series(index=None, name=None)Create a Series with both index and values equal to the index keys.
See more: bigframes.pandas.Index.to_series
bigframes.pandas.Index.transpose
transpose()Return the transpose, which is by definition self.
See more: bigframes.pandas.Index.transpose
bigframes.pandas.Index.unique
unique(level=None)Returns unique values in the index.
See more: bigframes.pandas.Index.unique
bigframes.pandas.Index.value_counts
value_counts(normalize=False, sort=True, ascending=False, *, dropna=True)Return a Series containing counts of unique values.
See more: bigframes.pandas.Index.value_counts
bigframes.pandas.MultiIndex
MultiIndex(data=None, dtype=None, *, name=None, session=None)A multi-level, or hierarchical, index object for pandas objects.
See more: bigframes.pandas.MultiIndex
bigframes.pandas.MultiIndex.__init__
__init__()API documentation for __init__ method.
See more: bigframes.pandas.MultiIndex.init
bigframes.pandas.MultiIndex.all
all()Return whether all elements are Truthy.
See more: bigframes.pandas.MultiIndex.all
bigframes.pandas.MultiIndex.any
any()Return whether any element is Truthy.
See more: bigframes.pandas.MultiIndex.any
bigframes.pandas.MultiIndex.argmax
argmax()Return int position of the largest value in the Series.
See more: bigframes.pandas.MultiIndex.argmax
bigframes.pandas.MultiIndex.argmin
argmin()Return int position of the smallest value in the series.
See more: bigframes.pandas.MultiIndex.argmin
bigframes.pandas.MultiIndex.astype
astype(dtype, *, errors="raise")Create an Index with values cast to dtypes.
See more: bigframes.pandas.MultiIndex.astype
bigframes.pandas.MultiIndex.copy
copy(name=None)Make a copy of this object.
See more: bigframes.pandas.MultiIndex.copy
bigframes.pandas.MultiIndex.drop
drop(labels)Make new Index with passed list of labels deleted.
See more: bigframes.pandas.MultiIndex.drop
bigframes.pandas.MultiIndex.drop_duplicates
drop_duplicates(*, keep="first")Return Index with duplicate values removed.
bigframes.pandas.MultiIndex.dropna
dropna(how="any")Return Index without NA/NaN values.
See more: bigframes.pandas.MultiIndex.dropna
bigframes.pandas.MultiIndex.fillna
fillna(value=None)Fill NA (NULL in BigQuery) values using the specified method.
See more: bigframes.pandas.MultiIndex.fillna
bigframes.pandas.MultiIndex.from_arrays
from_arrays(arrays, sortorder=None, names=None, *, session=None)Convert arrays to MultiIndex.
See more: bigframes.pandas.MultiIndex.from_arrays
bigframes.pandas.MultiIndex.from_frame
from_frame(frame)Make a MultiIndex from a DataFrame.
See more: bigframes.pandas.MultiIndex.from_frame
bigframes.pandas.MultiIndex.from_tuples
from_tuples(tuples, sortorder=None, names=None, *, session=None)Convert list of tuples to MultiIndex.
See more: bigframes.pandas.MultiIndex.from_tuples
bigframes.pandas.MultiIndex.get_level_values
get_level_values(level)Return an Index of values for requested level.
bigframes.pandas.MultiIndex.get_loc
get_loc(key)Get integer location, slice or boolean mask for requested label.
See more: bigframes.pandas.MultiIndex.get_loc
bigframes.pandas.MultiIndex.isin
isin(values)Return a boolean array where the index values are in values.
See more: bigframes.pandas.MultiIndex.isin
bigframes.pandas.MultiIndex.item
item()Return the first element of the underlying data as a Python scalar.
See more: bigframes.pandas.MultiIndex.item
bigframes.pandas.MultiIndex.max
max()Return the maximum value of the Index.
See more: bigframes.pandas.MultiIndex.max
bigframes.pandas.MultiIndex.min
min()Return the minimum value of the Index.
See more: bigframes.pandas.MultiIndex.min
bigframes.pandas.MultiIndex.nunique
nunique()Return number of unique elements in the object.
See more: bigframes.pandas.MultiIndex.nunique
bigframes.pandas.MultiIndex.rename
rename(name, *, inplace=False)Alter Index or MultiIndex name.
See more: bigframes.pandas.MultiIndex.rename
bigframes.pandas.MultiIndex.sort_values
sort_values(*, inplace=False, ascending=True, na_position="last")Return a sorted copy of the index.
See more: bigframes.pandas.MultiIndex.sort_values
bigframes.pandas.MultiIndex.to_list
to_list(*, allow_large_results=None)API documentation for to_list method.
See more: bigframes.pandas.MultiIndex.to_list
bigframes.pandas.MultiIndex.to_numpy
to_numpy(dtype=None, *, allow_large_results=None, **kwargs)A NumPy ndarray representing the values in this Series or Index.
See more: bigframes.pandas.MultiIndex.to_numpy
bigframes.pandas.MultiIndex.to_pandas
to_pandas(*, allow_large_results=None, dry_run=False)Gets the Index as a pandas Index.
See more: bigframes.pandas.MultiIndex.to_pandas
bigframes.pandas.MultiIndex.to_series
to_series(index=None, name=None)Create a Series with both index and values equal to the index keys.
See more: bigframes.pandas.MultiIndex.to_series
bigframes.pandas.MultiIndex.transpose
transpose()Return the transpose, which is by definition self.
See more: bigframes.pandas.MultiIndex.transpose
bigframes.pandas.MultiIndex.unique
unique(level=None)Returns unique values in the index.
See more: bigframes.pandas.MultiIndex.unique
bigframes.pandas.MultiIndex.value_counts
value_counts(normalize=False, sort=True, ascending=False, *, dropna=True)Return a Series containing counts of unique values.
See more: bigframes.pandas.MultiIndex.value_counts
bigframes.pandas.NamedAgg
NamedAgg(column, aggfunc)Create new instance of NamedAgg(column, aggfunc).
See more: bigframes.pandas.NamedAgg
bigframes.pandas.NamedAgg.__init__
__init__()API documentation for __init__ method.
See more: bigframes.pandas.NamedAgg.init
bigframes.pandas.NamedAgg.count
count(value, /)Return number of occurrences of value.
See more: bigframes.pandas.NamedAgg.count
bigframes.pandas.NamedAgg.index
index(value, start=0, stop=9223372036854775807, /)Return first index of value.
See more: bigframes.pandas.NamedAgg.index
bigframes.pandas.Series
Series(
data=None,
index=None,
dtype: typing.Optional[
typing.Union[
typing.Literal[
"boolean",
"Float64",
"Int64",
"int64[pyarrow]",
"string",
"string[pyarrow]",
"timestamp[us, tz=UTC][pyarrow]",
"timestamp[us][pyarrow]",
"date32[day][pyarrow]",
"time64[us][pyarrow]",
"decimal128(38, 9)[pyarrow]",
"decimal256(76, 38)[pyarrow]",
"binary[pyarrow]",
"duration[us][pyarrow]",
],
pandas.core.arrays.boolean.BooleanDtype,
pandas.core.arrays.floating.Float64Dtype,
pandas.core.arrays.integer.Int64Dtype,
pandas.core.arrays.string_.StringDtype,
pandas.core.dtypes.dtypes.ArrowDtype,
geopandas.array.GeometryDtype,
]
] = None,
name: str | None = None,
copy: typing.Optional[bool] = None,
*,
session: typing.Optional[bigframes.session.Session] = None
)API documentation for Series method.
See more: bigframes.pandas.Series
bigframes.pandas.Series.__init__
__init__(data=None, index=None, dtype=None, name=None, copy=None, *, session=None)API documentation for __init__ method.
See more: bigframes.pandas.Series.init
bigframes.pandas.Series.abs
abs()Return a Series/DataFrame with absolute numeric value of each element.
See more: bigframes.pandas.Series.abs
bigframes.pandas.Series.add
add(other)Return addition of Series and other, element-wise (binary operator add).
See more: bigframes.pandas.Series.add
bigframes.pandas.Series.add_prefix
add_prefix(prefix, axis=None)Prefix labels with string prefix.
See more: bigframes.pandas.Series.add_prefix
bigframes.pandas.Series.add_suffix
add_suffix(suffix, axis=None)Suffix labels with string suffix.
See more: bigframes.pandas.Series.add_suffix
bigframes.pandas.Series.agg
agg(func)Aggregate using one or more operations over the specified axis.
See more: bigframes.pandas.Series.agg
bigframes.pandas.Series.aggregate
aggregate(func)Aggregate using one or more operations over the specified axis.
See more: bigframes.pandas.Series.aggregate
bigframes.pandas.Series.all
all()Return whether all elements are True, potentially over an axis.
See more: bigframes.pandas.Series.all
bigframes.pandas.Series.any
any()Return whether any element is True, potentially over an axis.
See more: bigframes.pandas.Series.any
bigframes.pandas.Series.apply
apply(func, by_row="compat", *, args=())Invoke function on values of a Series.
See more: bigframes.pandas.Series.apply
bigframes.pandas.Series.area
area(x=None, y=None, stacked=True, **kwargs)Draw a stacked area plot.
See more: bigframes.pandas.Series.area
bigframes.pandas.Series.argmax
argmax()Return int position of the largest value in the series.
See more: bigframes.pandas.Series.argmax
bigframes.pandas.Series.argmin
argmin()Return int position of the smallest value in the Series.
See more: bigframes.pandas.Series.argmin
bigframes.pandas.Series.astype
astype(dtype, *, errors="raise")Cast a pandas object to a specified dtype dtype.
See more: bigframes.pandas.Series.astype
bigframes.pandas.Series.autocorr
autocorr(lag=1)Compute the lag-N autocorrelation.
See more: bigframes.pandas.Series.autocorr
bigframes.pandas.Series.bar
bar(x=None, y=None, **kwargs)Draw a vertical bar plot.
See more: bigframes.pandas.Series.bar
bigframes.pandas.Series.between
between(left, right, inclusive="both")Return boolean Series equivalent to left <= series <= right.
See more: bigframes.pandas.Series.between
bigframes.pandas.Series.bfill
bfill(*, limit=None)Fill NA/NaN values by using the next valid observation to fill the gap.
See more: bigframes.pandas.Series.bfill
bigframes.pandas.Series.cache
cache()Materializes the Series to a temporary table.
See more: bigframes.pandas.Series.cache
bigframes.pandas.Series.case_when
case_when(caselist)Replace values where the conditions are True.
See more: bigframes.pandas.Series.case_when
bigframes.pandas.Series.clip
clip(lower=None, upper=None)Trim values at input threshold(s).
See more: bigframes.pandas.Series.clip
bigframes.pandas.Series.combine
combine(other, func)Combine the Series with a Series or scalar according to func.
See more: bigframes.pandas.Series.combine
bigframes.pandas.Series.combine_first
combine_first(other)Update null elements with value in the same location in 'other'.
See more: bigframes.pandas.Series.combine_first
bigframes.pandas.Series.copy
copy()Make a copy of this object's indices and data.
See more: bigframes.pandas.Series.copy
bigframes.pandas.Series.corr
corr(other, method="pearson", min_periods=None)Compute the correlation with the other Series.
See more: bigframes.pandas.Series.corr
bigframes.pandas.Series.count
count()Return number of non-NA/null observations in the Series.
See more: bigframes.pandas.Series.count
bigframes.pandas.Series.cov
cov(other)Compute covariance with Series, excluding missing values.
See more: bigframes.pandas.Series.cov
bigframes.pandas.Series.cummax
cummax()Return cumulative maximum over a DataFrame or Series axis.
See more: bigframes.pandas.Series.cummax
bigframes.pandas.Series.cummin
cummin()Return cumulative minimum over a DataFrame or Series axis.
See more: bigframes.pandas.Series.cummin
bigframes.pandas.Series.cumprod
cumprod()Return cumulative product over a DataFrame or Series axis.
See more: bigframes.pandas.Series.cumprod
bigframes.pandas.Series.cumsum
cumsum()Return cumulative sum over a DataFrame or Series axis.
See more: bigframes.pandas.Series.cumsum
bigframes.pandas.Series.describe
describe()Generate descriptive statistics.
See more: bigframes.pandas.Series.describe
bigframes.pandas.Series.diff
diff(periods=1)First discrete difference of element.
See more: bigframes.pandas.Series.diff
bigframes.pandas.Series.div
div(other)Return floating division of Series and other, element-wise (binary operator truediv).
See more: bigframes.pandas.Series.div
bigframes.pandas.Series.divide
divide(other)Return floating division of Series and other, element-wise (binary operator truediv).
See more: bigframes.pandas.Series.divide
bigframes.pandas.Series.divmod
divmod(other)Return integer division and modulo of Series and other, element-wise (binary operator divmod).
See more: bigframes.pandas.Series.divmod
bigframes.pandas.Series.dot
dot(other)Compute the dot product between the Series and the columns of other.
See more: bigframes.pandas.Series.dot
bigframes.pandas.Series.drop
drop(labels=None, *, axis=0, index=None, columns=None, level=None)Return Series with specified index labels removed.
See more: bigframes.pandas.Series.drop
bigframes.pandas.Series.drop_duplicates
drop_duplicates(*, keep="first")Return Series with duplicate values removed.
See more: bigframes.pandas.Series.drop_duplicates
bigframes.pandas.Series.droplevel
droplevel(level, axis=0)Return Series with requested index / column level(s) removed.
See more: bigframes.pandas.Series.droplevel
bigframes.pandas.Series.dropna
dropna(*, axis=0, inplace=False, how=None, ignore_index=False)Return a new Series with missing values removed.
See more: bigframes.pandas.Series.dropna
bigframes.pandas.Series.duplicated
duplicated(keep="first")Indicate duplicate Series values.
See more: bigframes.pandas.Series.duplicated
bigframes.pandas.Series.eq
eq(other)Return equal of Series and other, element-wise (binary operator eq).
See more: bigframes.pandas.Series.eq
bigframes.pandas.Series.equals
equals(other)Test whether two objects contain the same elements.
See more: bigframes.pandas.Series.equals
bigframes.pandas.Series.expanding
expanding(min_periods=1)Provide expanding window calculations.
See more: bigframes.pandas.Series.expanding
bigframes.pandas.Series.explode
explode(*, ignore_index=False)Transform each element of a list-like to a row.
See more: bigframes.pandas.Series.explode
bigframes.pandas.Series.ffill
ffill(*, limit=None)Fill NA/NaN values by propagating the last valid observation to next valid.
See more: bigframes.pandas.Series.ffill
bigframes.pandas.Series.fillna
fillna(value=None)Fill NA (NULL in BigQuery) values using the specified method.
See more: bigframes.pandas.Series.fillna
bigframes.pandas.Series.filter
filter(items=None, like=None, regex=None, axis=None)Subset the dataframe rows or columns according to the specified index labels.
See more: bigframes.pandas.Series.filter
bigframes.pandas.Series.floordiv
floordiv(other)Return integer division of Series and other, element-wise (binary operator floordiv).
See more: bigframes.pandas.Series.floordiv
bigframes.pandas.Series.ge
ge(other)Get 'greater than or equal to' of Series and other, element-wise (binary operator ge).
See more: bigframes.pandas.Series.ge
bigframes.pandas.Series.get
get(key, default=None)Get item from object for given key (ex: DataFrame column).
See more: bigframes.pandas.Series.get
bigframes.pandas.Series.groupby
groupby(by=None, axis=0, level=None, as_index=True, *, dropna=True)Group Series using a mapper or by a Series of columns.
See more: bigframes.pandas.Series.groupby
bigframes.pandas.Series.gt
gt(other)Return Greater than of series and other, element-wise (binary operator gt).
See more: bigframes.pandas.Series.gt
bigframes.pandas.Series.head
head(n=5)Return the first n rows.
See more: bigframes.pandas.Series.head
bigframes.pandas.Series.hist
hist(by=None, bins=10, **kwargs)Draw one histogram of the DataFrame’s columns.
See more: bigframes.pandas.Series.hist
bigframes.pandas.Series.idxmax
idxmax()Return the row label of the maximum value.
See more: bigframes.pandas.Series.idxmax
bigframes.pandas.Series.idxmin
idxmin()Return the row label of the minimum value.
See more: bigframes.pandas.Series.idxmin
bigframes.pandas.Series.interpolate
interpolate(method="linear")Fill NaN values using an interpolation method.
See more: bigframes.pandas.Series.interpolate
bigframes.pandas.Series.isin
isin(values)Whether elements in Series are contained in values.
See more: bigframes.pandas.Series.isin
bigframes.pandas.Series.isna
isna()Detect missing (NULL) values.
See more: bigframes.pandas.Series.isna
bigframes.pandas.Series.isnull
isnull()Detect missing (NULL) values.
See more: bigframes.pandas.Series.isnull
bigframes.pandas.Series.item
item()Return the first element of the underlying data as a Python scalar.
See more: bigframes.pandas.Series.item
bigframes.pandas.Series.items
items()Lazily iterate over (index, value) tuples.
See more: bigframes.pandas.Series.items
bigframes.pandas.Series.keys
keys()Return alias for index.
See more: bigframes.pandas.Series.keys
bigframes.pandas.Series.kurt
kurt()Return unbiased kurtosis over requested axis.
See more: bigframes.pandas.Series.kurt
bigframes.pandas.Series.kurtosis
kurtosis()Return unbiased kurtosis over requested axis.
See more: bigframes.pandas.Series.kurtosis
bigframes.pandas.Series.le
le(other)Get 'less than or equal to' of Series and other, element-wise (binary operator le).
See more: bigframes.pandas.Series.le
bigframes.pandas.Series.line
line(x=None, y=None, **kwargs)Plot Series or DataFrame as lines.
See more: bigframes.pandas.Series.line
bigframes.pandas.Series.lt
lt(other)Get 'less than' of Series and other, element-wise (binary operator lt).
See more: bigframes.pandas.Series.lt
bigframes.pandas.Series.map
map(arg, na_action=None, *, verify_integrity=False)Map values of Series according to an input mapping or function.
See more: bigframes.pandas.Series.map
bigframes.pandas.Series.mask
mask(cond, other=None)Replace values where the condition is True.
See more: bigframes.pandas.Series.mask
bigframes.pandas.Series.max
max()Return the maximum of the values over the requested axis.
See more: bigframes.pandas.Series.max
bigframes.pandas.Series.mean
mean()Return the mean of the values over the requested axis.
See more: bigframes.pandas.Series.mean
bigframes.pandas.Series.median
median(*, exact=True)Return the median of the values over the requested axis.
See more: bigframes.pandas.Series.median
bigframes.pandas.Series.min
min()Return the maximum of the values over the requested axis.
See more: bigframes.pandas.Series.min
bigframes.pandas.Series.mod
mod(other)Return modulo of Series and other, element-wise (binary operator mod).
See more: bigframes.pandas.Series.mod
bigframes.pandas.Series.mode
mode()Return the mode(s) of the Series.
See more: bigframes.pandas.Series.mode
bigframes.pandas.Series.mul
mul(other)Return multiplication of Series and other, element-wise (binary operator mul).
See more: bigframes.pandas.Series.mul
bigframes.pandas.Series.multiply
multiply(other)Return multiplication of Series and other, element-wise (binary operator mul).
See more: bigframes.pandas.Series.multiply
bigframes.pandas.Series.ne
ne(other)Return not equal of Series and other, element-wise (binary operator ne).
See more: bigframes.pandas.Series.ne
bigframes.pandas.Series.nlargest
nlargest(n=5, keep="first")Return the largest n elements.
See more: bigframes.pandas.Series.nlargest
bigframes.pandas.Series.notna
notna()Detect existing (non-missing) values.
See more: bigframes.pandas.Series.notna
bigframes.pandas.Series.notnull
notnull()Detect existing (non-missing) values.
See more: bigframes.pandas.Series.notnull
bigframes.pandas.Series.nsmallest
nsmallest(n=5, keep="first")Return the smallest n elements.
See more: bigframes.pandas.Series.nsmallest
bigframes.pandas.Series.nunique
nunique()Return number of unique elements in the object.
See more: bigframes.pandas.Series.nunique
bigframes.pandas.Series.pad
pad(*, limit=None)Fill NA/NaN values by propagating the last valid observation to next valid.
See more: bigframes.pandas.Series.pad
bigframes.pandas.Series.pct_change
pct_change(periods=1)Fractional change between the current and a prior element.
See more: bigframes.pandas.Series.pct_change
bigframes.pandas.Series.peek
peek(n=5, *, force=True, allow_large_results=None)Preview n arbitrary elements from the series without guarantees about row selection or ordering.
See more: bigframes.pandas.Series.peek
bigframes.pandas.Series.pipe
pipe(func, *args, **kwargs)Apply chainable functions that expect Series or DataFrames.
See more: bigframes.pandas.Series.pipe
bigframes.pandas.Series.pow
pow(other)Return Exponential power of series and other, element-wise (binary
operator pow).
See more: bigframes.pandas.Series.pow
bigframes.pandas.Series.prod
prod()Return the product of the values over the requested axis.
See more: bigframes.pandas.Series.prod
bigframes.pandas.Series.product
product()Return the product of the values over the requested axis.
See more: bigframes.pandas.Series.product
bigframes.pandas.Series.quantile
quantile(q=0.5)Return value at the given quantile.
See more: bigframes.pandas.Series.quantile
bigframes.pandas.Series.radd
radd(other)Return addition of Series and other, element-wise (binary operator radd).
See more: bigframes.pandas.Series.radd
bigframes.pandas.Series.rank
rank(
axis=0,
method="average",
numeric_only=False,
na_option="keep",
ascending=True,
pct=False,
)Compute numerical data ranks (1 through n) along axis.
See more: bigframes.pandas.Series.rank
bigframes.pandas.Series.rdiv
rdiv(other)Return floating division of Series and other, element-wise (binary operator rtruediv).
See more: bigframes.pandas.Series.rdiv
bigframes.pandas.Series.rdivmod
rdivmod(other)Return integer division and modulo of Series and other, element-wise (binary operator rdivmod).
See more: bigframes.pandas.Series.rdivmod
bigframes.pandas.Series.reindex
reindex(index=None, *, validate=None)Conform Series to new index with optional filling logic.
See more: bigframes.pandas.Series.reindex
bigframes.pandas.Series.reindex_like
reindex_like(other, *, validate=None)Return an object with matching indices as other object.
See more: bigframes.pandas.Series.reindex_like
bigframes.pandas.Series.rename
Alter Series index labels or name.
See more: bigframes.pandas.Series.rename
bigframes.pandas.Series.rename_axis
Set the name of the axis for the index or columns.
See more: bigframes.pandas.Series.rename_axis
bigframes.pandas.Series.reorder_levels
reorder_levels(order, axis=0)Rearrange index levels using input order.
See more: bigframes.pandas.Series.reorder_levels
bigframes.pandas.Series.replace
replace(to_replace, value=None, *, regex=False)Replace values given in to_replace with value.
See more: bigframes.pandas.Series.replace
bigframes.pandas.Series.resample
resample(rule, *, closed=None, label=None, level=None, origin="start_day")Resample time-series data.
See more: bigframes.pandas.Series.resample
bigframes.pandas.Series.reset_index
Generate a new DataFrame or Series with the index reset.
See more: bigframes.pandas.Series.reset_index
bigframes.pandas.Series.rfloordiv
rfloordiv(other)Return integer division of Series and other, element-wise (binary operator rfloordiv).
See more: bigframes.pandas.Series.rfloordiv
bigframes.pandas.Series.rmod
rmod(other)Return modulo of Series and other, element-wise (binary operator mod).
See more: bigframes.pandas.Series.rmod
bigframes.pandas.Series.rmul
rmul(other)Return multiplication of Series and other, element-wise (binary operator mul).
See more: bigframes.pandas.Series.rmul
bigframes.pandas.Series.rolling
rolling(window, min_periods=None, closed="right")Provide rolling window calculations.
See more: bigframes.pandas.Series.rolling
bigframes.pandas.Series.round
round(decimals=0)Round each value in a Series to the given number of decimals.
See more: bigframes.pandas.Series.round
bigframes.pandas.Series.rpow
rpow(other)Return Exponential power of series and other, element-wise (binary
operator rpow).
See more: bigframes.pandas.Series.rpow
bigframes.pandas.Series.rsub
rsub(other)Return subtraction of Series and other, element-wise (binary operator rsub).
See more: bigframes.pandas.Series.rsub
bigframes.pandas.Series.rtruediv
rtruediv(other)Return floating division of Series and other, element-wise (binary operator rtruediv).
See more: bigframes.pandas.Series.rtruediv
bigframes.pandas.Series.sample
sample(n=None, frac=None, *, random_state=None, sort="random")Return a random sample of items from an axis of object.
See more: bigframes.pandas.Series.sample
bigframes.pandas.Series.shift
shift(periods=1)Shift index by desired number of periods.
See more: bigframes.pandas.Series.shift
bigframes.pandas.Series.skew
skew()Return unbiased skew over requested axis.
See more: bigframes.pandas.Series.skew
bigframes.pandas.Series.sort_index
Sort Series by index labels.
See more: bigframes.pandas.Series.sort_index
bigframes.pandas.Series.sort_values
Sort by the values.
See more: bigframes.pandas.Series.sort_values
bigframes.pandas.Series.std
std()Return sample standard deviation over requested axis.
See more: bigframes.pandas.Series.std
bigframes.pandas.Series.sub
sub(other)Return subtraction of Series and other, element-wise (binary operator sub).
See more: bigframes.pandas.Series.sub
bigframes.pandas.Series.subtract
subtract(other)Return subtraction of Series and other, element-wise (binary operator sub).
See more: bigframes.pandas.Series.subtract
bigframes.pandas.Series.sum
sum()Return the sum of the values over the requested axis.
See more: bigframes.pandas.Series.sum
bigframes.pandas.Series.swaplevel
swaplevel(i=-2, j=-1)Swap levels i and j in a MultiIndex.
See more: bigframes.pandas.Series.swaplevel
bigframes.pandas.Series.tail
tail(n=5)Return the last n rows.
See more: bigframes.pandas.Series.tail
bigframes.pandas.Series.take
take(indices, axis=0, **kwargs)Return the elements in the given positional indices along an axis.
See more: bigframes.pandas.Series.take
bigframes.pandas.Series.to_csv
to_csv(
path_or_buf=None, sep=",", *, header=True, index=True, allow_large_results=None
)Write object to a comma-separated values (csv) file on Cloud Storage.
See more: bigframes.pandas.Series.to_csv
bigframes.pandas.Series.to_dict
to_dict(into=dict, *, allow_large_results=None)Convert Series to {label -> value} dict or dict-like object.
See more: bigframes.pandas.Series.to_dict
bigframes.pandas.Series.to_excel
to_excel(excel_writer, sheet_name="Sheet1", *, allow_large_results=None, **kwargs)Write Series to an Excel sheet.
See more: bigframes.pandas.Series.to_excel
bigframes.pandas.Series.to_frame
to_frame(name=None)Convert Series to DataFrame.
See more: bigframes.pandas.Series.to_frame
bigframes.pandas.Series.to_json
to_json(
path_or_buf=None, orient=None, *, lines=False, index=True, allow_large_results=None
)Convert the object to a JSON string, written to Cloud Storage.
See more: bigframes.pandas.Series.to_json
bigframes.pandas.Series.to_latex
to_latex(
buf=None,
columns=None,
header=True,
index=True,
*,
allow_large_results=None,
**kwargs
)Render object to a LaTeX tabular, longtable, or nested table.
See more: bigframes.pandas.Series.to_latex
bigframes.pandas.Series.to_list
to_list(*, allow_large_results=None)Return a list of the values.
See more: bigframes.pandas.Series.to_list
bigframes.pandas.Series.to_markdown
to_markdown(buf=None, mode="wt", index=True, *, allow_large_results=None, **kwargs)Print Series in Markdown-friendly format.
See more: bigframes.pandas.Series.to_markdown
bigframes.pandas.Series.to_numpy
to_numpy(
dtype=None,
copy=False,
na_value=_NoDefault.no_default,
*,
allow_large_results=None,
**kwargs
)A NumPy ndarray representing the values in this Series or Index.
See more: bigframes.pandas.Series.to_numpy
bigframes.pandas.Series.to_pandas
to_pandas(
max_download_size=None,
sampling_method=None,
random_state=None,
*,
ordered=True,
dry_run=False,
allow_large_results=None
)Writes Series to pandas Series.
See more: bigframes.pandas.Series.to_pandas
bigframes.pandas.Series.to_pandas_batches
to_pandas_batches(page_size=None, max_results=None, *, allow_large_results=None)Stream Series results to an iterable of pandas Series.
bigframes.pandas.Series.to_pickle
to_pickle(path, *, allow_large_results=None, **kwargs)Pickle (serialize) object to file.
See more: bigframes.pandas.Series.to_pickle
bigframes.pandas.Series.to_string
to_string(
buf=None,
na_rep="NaN",
float_format=None,
header=True,
index=True,
length=False,
dtype=False,
name=False,
max_rows=None,
min_rows=None,
*,
allow_large_results=None
)Render a string representation of the Series.
See more: bigframes.pandas.Series.to_string
bigframes.pandas.Series.to_xarray
to_xarray(*, allow_large_results=None)Return an xarray object from the pandas object.
See more: bigframes.pandas.Series.to_xarray
bigframes.pandas.Series.tolist
tolist(*, allow_large_results=None)Return a list of the values.
See more: bigframes.pandas.Series.tolist
bigframes.pandas.Series.transpose
transpose()Return the transpose, which is by definition self.
See more: bigframes.pandas.Series.transpose
bigframes.pandas.Series.truediv
truediv(other)Return floating division of Series and other, element-wise (binary operator truediv).
See more: bigframes.pandas.Series.truediv
bigframes.pandas.Series.unique
unique(keep_order=True)Return unique values of Series object.
See more: bigframes.pandas.Series.unique
bigframes.pandas.Series.unstack
unstack(level=-1)Unstack, also known as pivot, Series with MultiIndex to produce DataFrame.
See more: bigframes.pandas.Series.unstack
bigframes.pandas.Series.update
update(other)Modify Series in place using values from passed Series.
See more: bigframes.pandas.Series.update
bigframes.pandas.Series.value_counts
value_counts(normalize=False, sort=True, ascending=False, *, dropna=True)Return a Series containing counts of unique values.
See more: bigframes.pandas.Series.value_counts
bigframes.pandas.Series.var
var()Return unbiased variance over requested axis.
See more: bigframes.pandas.Series.var
bigframes.pandas.Series.where
where(cond, other=None)Replace values where the condition is False.
See more: bigframes.pandas.Series.where
bigframes.streaming.StreamingDataFrame
StreamingDataFrame(df: bigframes.dataframe.DataFrame, *, create_key=0)Two-dimensional, size-mutable, potentially heterogeneous tabular data.
See more: bigframes.streaming.StreamingDataFrame
bigframes.streaming.StreamingDataFrame.__init__
__init__(df, *, create_key=0)API documentation for __init__ method.
bigframes.streaming.StreamingDataFrame.rename
rename(*args, **kwargs)Rename columns.
bigframes.streaming.StreamingDataFrame.to_bigtable
to_bigtable(
*,
instance,
table,
service_account_email=None,
app_profile=None,
truncate=False,
overwrite=False,
auto_create_column_families=False,
bigtable_options=None,
job_id=None,
job_id_prefix=None,
start_timestamp=None,
end_timestamp=None
)Export the StreamingDataFrame as a continue job and returns a QueryJob object for some management functionality.
See more: bigframes.streaming.StreamingDataFrame.to_bigtable
bigframes.streaming.StreamingDataFrame.to_pubsub
to_pubsub(
*,
topic,
service_account_email,
job_id=None,
job_id_prefix=None,
start_timestamp=None
)Export the StreamingDataFrame as a continue job and returns a QueryJob object for some management functionality.