- 2.43.0 (latest)
 - 2.41.2
 - 2.40.0
 - 2.39.1
 - 2.38.0
 - 2.37.0
 - 2.36.0
 - 2.35.0
 - 2.34.0
 - 2.33.0
 - 2.32.0
 - 2.30.2
 - 2.29.0
 - 2.28.3
 - 2.27.0
 - 2.26.0
 - 2.25.0
 - 2.24.1
 - 2.23.3
 - 2.22.0
 - 2.21.0
 - 2.20.0
 - 2.19.1
 - 2.18.0
 - 2.17.0
 - 2.16.1
 - 2.15.2
 - 2.14.1
 - 2.13.0
 - 2.12.0
 - 2.11.0
 - 2.10.0
 - 2.9.1
 - 2.8.1
 - 2.7.1
 - 2.6.0
 - 2.5.0
 - 2.4.0
 - 2.3.0
 - 2.2.0
 - 2.1.2
 - 2.0.0
 - 1.1.3
 - 1.0.0
 - 0.8.0
 - 0.7.2
 
ConversationModelsClient(*, credentials: Optional[google.auth.credentials.Credentials] = None, transport: Optional[Union[str, google.cloud.dialogflow_v2.services.conversation_models.transports.base.ConversationModelsTransport]] = None, client_options: Optional[google.api_core.client_options.ClientOptions] = None, client_info: google.api_core.gapic_v1.client_info.ClientInfo = <google.api_core.gapic_v1.client_info.ClientInfo object>)Manages a collection of models for human agent assistant.
Properties
transport
Returns the transport used by the client instance.
| Returns | |
|---|---|
| Type | Description | 
ConversationModelsTransport | 
        The transport used by the client instance. | 
Methods
ConversationModelsClient
ConversationModelsClient(*, credentials: Optional[google.auth.credentials.Credentials] = None, transport: Optional[Union[str, google.cloud.dialogflow_v2.services.conversation_models.transports.base.ConversationModelsTransport]] = None, client_options: Optional[google.api_core.client_options.ClientOptions] = None, client_info: google.api_core.gapic_v1.client_info.ClientInfo = <google.api_core.gapic_v1.client_info.ClientInfo object>)Instantiates the conversation models client.
| Parameters | |
|---|---|
| Name | Description | 
credentials | 
        
          Optional[google.auth.credentials.Credentials]
          The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment.  | 
      
transport | 
        
          Union[str, ConversationModelsTransport]
          The transport to use. If set to None, a transport is chosen automatically.  | 
      
client_options | 
        
          google.api_core.client_options.ClientOptions
          Custom options for the client. It won't take effect if a   | 
      
client_info | 
        
          google.api_core.gapic_v1.client_info.ClientInfo
          The client info used to send a user-agent string along with API requests. If   | 
      
| Exceptions | |
|---|---|
| Type | Description | 
google.auth.exceptions.MutualTLSChannelError | 
        If mutual TLS transport creation failed for any reason. | 
__exit__
__exit__(type, value, traceback)Releases underlying transport's resources.
common_billing_account_path
common_billing_account_path(billing_account: str)Returns a fully-qualified billing_account string.
common_folder_path
common_folder_path(folder: str)Returns a fully-qualified folder string.
common_location_path
common_location_path(project: str, location: str)Returns a fully-qualified location string.
common_organization_path
common_organization_path(organization: str)Returns a fully-qualified organization string.
common_project_path
common_project_path(project: str)Returns a fully-qualified project string.
conversation_dataset_path
conversation_dataset_path(project: str, location: str, conversation_dataset: str)Returns a fully-qualified conversation_dataset string.
conversation_model_evaluation_path
conversation_model_evaluation_path(project: str, conversation_model: str)Returns a fully-qualified conversation_model_evaluation string.
conversation_model_path
conversation_model_path(project: str, location: str, conversation_model: str)Returns a fully-qualified conversation_model string.
create_conversation_model
create_conversation_model(request: Optional[Union[google.cloud.dialogflow_v2.types.conversation_model.CreateConversationModelRequest, dict]] = None, *, parent: Optional[str] = None, conversation_model: Optional[google.cloud.dialogflow_v2.types.conversation_model.ConversationModel] = None, retry: Union[google.api_core.retry.Retry, google.api_core.gapic_v1.method._MethodDefault] = <_MethodDefault._DEFAULT_VALUE: <object object>>, timeout: Optional[float] = None, metadata: Sequence[Tuple[str, str]] = ())Creates a model.
This method is a long-running
operation <https://cloud.google.com/dialogflow/es/docs/how/long-running-operations>__.
The returned Operation type has the following
method-specific fields:
metadata: xref_CreateConversationModelOperationMetadataresponse: xref_ConversationModel
from google.cloud import dialogflow_v2
def sample_create_conversation_model():
    # Create a client
    client = dialogflow_v2.ConversationModelsClient()
    # Initialize request argument(s)
    conversation_model = dialogflow_v2.ConversationModel()
    conversation_model.display_name = "display_name_value"
    conversation_model.datasets.dataset = "dataset_value"
    request = dialogflow_v2.CreateConversationModelRequest(
        conversation_model=conversation_model,
    )
    # Make the request
    operation = client.create_conversation_model(request=request)
    print("Waiting for operation to complete...")
    response = operation.result()
    # Handle the response
    print(response)
| Parameters | |
|---|---|
| Name | Description | 
request | 
        
          Union[google.cloud.dialogflow_v2.types.CreateConversationModelRequest, dict]
          The request object. The request message for ConversationModels.CreateConversationModel  | 
      
parent | 
        
          str
          The project to create conversation model for. Format:   | 
      
conversation_model | 
        
          google.cloud.dialogflow_v2.types.ConversationModel
          Required. The conversation model to create. This corresponds to the   | 
      
retry | 
        
          google.api_core.retry.Retry
          Designation of what errors, if any, should be retried.  | 
      
timeout | 
        
          float
          The timeout for this request.  | 
      
metadata | 
        
          Sequence[Tuple[str, str]]
          Strings which should be sent along with the request as metadata.  | 
      
| Returns | |
|---|---|
| Type | Description | 
google.api_core.operation.Operation | 
        An object representing a long-running operation. The result type for the operation will be ConversationModel Represents a conversation model. | 
create_conversation_model_evaluation
create_conversation_model_evaluation(request: Optional[Union[google.cloud.dialogflow_v2.types.conversation_model.CreateConversationModelEvaluationRequest, dict]] = None, *, parent: Optional[str] = None, conversation_model_evaluation: Optional[google.cloud.dialogflow_v2.types.conversation_model.ConversationModelEvaluation] = None, retry: Union[google.api_core.retry.Retry, google.api_core.gapic_v1.method._MethodDefault] = <_MethodDefault._DEFAULT_VALUE: <object object>>, timeout: Optional[float] = None, metadata: Sequence[Tuple[str, str]] = ())Creates evaluation of a conversation model.
from google.cloud import dialogflow_v2
def sample_create_conversation_model_evaluation():
    # Create a client
    client = dialogflow_v2.ConversationModelsClient()
    # Initialize request argument(s)
    request = dialogflow_v2.CreateConversationModelEvaluationRequest(
        parent="parent_value",
    )
    # Make the request
    operation = client.create_conversation_model_evaluation(request=request)
    print("Waiting for operation to complete...")
    response = operation.result()
    # Handle the response
    print(response)
| Parameters | |
|---|---|
| Name | Description | 
request | 
        
          Union[google.cloud.dialogflow_v2.types.CreateConversationModelEvaluationRequest, dict]
          The request object. The request message for ConversationModels.CreateConversationModelEvaluation  | 
      
parent | 
        
          str
          Required. The conversation model resource name. Format:   | 
      
conversation_model_evaluation | 
        
          google.cloud.dialogflow_v2.types.ConversationModelEvaluation
          Required. The conversation model evaluation to be created. This corresponds to the   | 
      
retry | 
        
          google.api_core.retry.Retry
          Designation of what errors, if any, should be retried.  | 
      
timeout | 
        
          float
          The timeout for this request.  | 
      
metadata | 
        
          Sequence[Tuple[str, str]]
          Strings which should be sent along with the request as metadata.  | 
      
| Returns | |
|---|---|
| Type | Description | 
google.api_core.operation.Operation | 
        An object representing a long-running operation. The result type for the operation will be ConversationModelEvaluation Represents evaluation result of a conversation model. | 
delete_conversation_model
delete_conversation_model(request: Optional[Union[google.cloud.dialogflow_v2.types.conversation_model.DeleteConversationModelRequest, dict]] = None, *, name: Optional[str] = None, retry: Union[google.api_core.retry.Retry, google.api_core.gapic_v1.method._MethodDefault] = <_MethodDefault._DEFAULT_VALUE: <object object>>, timeout: Optional[float] = None, metadata: Sequence[Tuple[str, str]] = ())Deletes a model.
This method is a long-running
operation <https://cloud.google.com/dialogflow/es/docs/how/long-running-operations>__.
The returned Operation type has the following
method-specific fields:
metadata: xref_DeleteConversationModelOperationMetadataresponse: AnEmpty message <https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#empty>__
from google.cloud import dialogflow_v2
def sample_delete_conversation_model():
    # Create a client
    client = dialogflow_v2.ConversationModelsClient()
    # Initialize request argument(s)
    request = dialogflow_v2.DeleteConversationModelRequest(
        name="name_value",
    )
    # Make the request
    operation = client.delete_conversation_model(request=request)
    print("Waiting for operation to complete...")
    response = operation.result()
    # Handle the response
    print(response)
| Parameters | |
|---|---|
| Name | Description | 
request | 
        
          Union[google.cloud.dialogflow_v2.types.DeleteConversationModelRequest, dict]
          The request object. The request message for ConversationModels.DeleteConversationModel  | 
      
name | 
        
          str
          Required. The conversation model to delete. Format:   | 
      
retry | 
        
          google.api_core.retry.Retry
          Designation of what errors, if any, should be retried.  | 
      
timeout | 
        
          float
          The timeout for this request.  | 
      
metadata | 
        
          Sequence[Tuple[str, str]]
          Strings which should be sent along with the request as metadata.  | 
      
| Returns | |
|---|---|
| Type | Description | 
google.api_core.operation.Operation | 
        An object representing a long-running operation. The result type for the operation will be google.protobuf.empty_pb2.Empty A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance: service Foo { rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty); } The JSON representation for Empty is empty JSON object {}. | 
      
deploy_conversation_model
deploy_conversation_model(request: Optional[Union[google.cloud.dialogflow_v2.types.conversation_model.DeployConversationModelRequest, dict]] = None, *, retry: Union[google.api_core.retry.Retry, google.api_core.gapic_v1.method._MethodDefault] = <_MethodDefault._DEFAULT_VALUE: <object object>>, timeout: Optional[float] = None, metadata: Sequence[Tuple[str, str]] = ())Deploys a model. If a model is already deployed, deploying it has no effect. A model can only serve prediction requests after it gets deployed. For article suggestion, custom model will not be used unless it is deployed.
This method is a long-running
operation <https://cloud.google.com/dialogflow/es/docs/how/long-running-operations>__.
The returned Operation type has the following
method-specific fields:
metadata: xref_DeployConversationModelOperationMetadataresponse: AnEmpty message <https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#empty>__
from google.cloud import dialogflow_v2
def sample_deploy_conversation_model():
    # Create a client
    client = dialogflow_v2.ConversationModelsClient()
    # Initialize request argument(s)
    request = dialogflow_v2.DeployConversationModelRequest(
        name="name_value",
    )
    # Make the request
    operation = client.deploy_conversation_model(request=request)
    print("Waiting for operation to complete...")
    response = operation.result()
    # Handle the response
    print(response)
| Parameters | |
|---|---|
| Name | Description | 
request | 
        
          Union[google.cloud.dialogflow_v2.types.DeployConversationModelRequest, dict]
          The request object. The request message for ConversationModels.DeployConversationModel  | 
      
retry | 
        
          google.api_core.retry.Retry
          Designation of what errors, if any, should be retried.  | 
      
timeout | 
        
          float
          The timeout for this request.  | 
      
metadata | 
        
          Sequence[Tuple[str, str]]
          Strings which should be sent along with the request as metadata.  | 
      
| Returns | |
|---|---|
| Type | Description | 
google.api_core.operation.Operation | 
        An object representing a long-running operation. The result type for the operation will be google.protobuf.empty_pb2.Empty A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance: service Foo { rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty); } The JSON representation for Empty is empty JSON object {}. | 
      
document_path
document_path(project: str, knowledge_base: str, document: str)Returns a fully-qualified document string.
from_service_account_file
from_service_account_file(filename: str, *args, **kwargs)Creates an instance of this client using the provided credentials file.
| Parameter | |
|---|---|
| Name | Description | 
filename | 
        
          str
          The path to the service account private key json file.  | 
      
| Returns | |
|---|---|
| Type | Description | 
ConversationModelsClient | 
        The constructed client. | 
from_service_account_info
from_service_account_info(info: dict, *args, **kwargs)Creates an instance of this client using the provided credentials info.
| Parameter | |
|---|---|
| Name | Description | 
info | 
        
          dict
          The service account private key info.  | 
      
| Returns | |
|---|---|
| Type | Description | 
ConversationModelsClient | 
        The constructed client. | 
from_service_account_json
from_service_account_json(filename: str, *args, **kwargs)Creates an instance of this client using the provided credentials file.
| Parameter | |
|---|---|
| Name | Description | 
filename | 
        
          str
          The path to the service account private key json file.  | 
      
| Returns | |
|---|---|
| Type | Description | 
ConversationModelsClient | 
        The constructed client. | 
get_conversation_model
get_conversation_model(request: Optional[Union[google.cloud.dialogflow_v2.types.conversation_model.GetConversationModelRequest, dict]] = None, *, name: Optional[str] = None, retry: Union[google.api_core.retry.Retry, google.api_core.gapic_v1.method._MethodDefault] = <_MethodDefault._DEFAULT_VALUE: <object object>>, timeout: Optional[float] = None, metadata: Sequence[Tuple[str, str]] = ())Gets conversation model.
from google.cloud import dialogflow_v2
def sample_get_conversation_model():
    # Create a client
    client = dialogflow_v2.ConversationModelsClient()
    # Initialize request argument(s)
    request = dialogflow_v2.GetConversationModelRequest(
        name="name_value",
    )
    # Make the request
    response = client.get_conversation_model(request=request)
    # Handle the response
    print(response)
| Parameters | |
|---|---|
| Name | Description | 
request | 
        
          Union[google.cloud.dialogflow_v2.types.GetConversationModelRequest, dict]
          The request object. The request message for ConversationModels.GetConversationModel  | 
      
name | 
        
          str
          Required. The conversation model to retrieve. Format:   | 
      
retry | 
        
          google.api_core.retry.Retry
          Designation of what errors, if any, should be retried.  | 
      
timeout | 
        
          float
          The timeout for this request.  | 
      
metadata | 
        
          Sequence[Tuple[str, str]]
          Strings which should be sent along with the request as metadata.  | 
      
| Returns | |
|---|---|
| Type | Description | 
google.cloud.dialogflow_v2.types.ConversationModel | 
        Represents a conversation model. | 
get_conversation_model_evaluation
get_conversation_model_evaluation(request: Optional[Union[google.cloud.dialogflow_v2.types.conversation_model.GetConversationModelEvaluationRequest, dict]] = None, *, name: Optional[str] = None, retry: Union[google.api_core.retry.Retry, google.api_core.gapic_v1.method._MethodDefault] = <_MethodDefault._DEFAULT_VALUE: <object object>>, timeout: Optional[float] = None, metadata: Sequence[Tuple[str, str]] = ())Gets an evaluation of conversation model.
from google.cloud import dialogflow_v2
def sample_get_conversation_model_evaluation():
    # Create a client
    client = dialogflow_v2.ConversationModelsClient()
    # Initialize request argument(s)
    request = dialogflow_v2.GetConversationModelEvaluationRequest(
        name="name_value",
    )
    # Make the request
    response = client.get_conversation_model_evaluation(request=request)
    # Handle the response
    print(response)
| Parameters | |
|---|---|
| Name | Description | 
request | 
        
          Union[google.cloud.dialogflow_v2.types.GetConversationModelEvaluationRequest, dict]
          The request object. The request message for ConversationModels.GetConversationModelEvaluation  | 
      
name | 
        
          str
          Required. The conversation model evaluation resource name. Format:   | 
      
retry | 
        
          google.api_core.retry.Retry
          Designation of what errors, if any, should be retried.  | 
      
timeout | 
        
          float
          The timeout for this request.  | 
      
metadata | 
        
          Sequence[Tuple[str, str]]
          Strings which should be sent along with the request as metadata.  | 
      
| Returns | |
|---|---|
| Type | Description | 
google.cloud.dialogflow_v2.types.ConversationModelEvaluation | 
        Represents evaluation result of a conversation model. | 
get_mtls_endpoint_and_cert_source
get_mtls_endpoint_and_cert_source(
    client_options: Optional[google.api_core.client_options.ClientOptions] = None,
)Return the API endpoint and client cert source for mutual TLS.
The client cert source is determined in the following order:
(1) if GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is not "true", the
client cert source is None.
(2) if client_options.client_cert_source is provided, use the provided one; if the
default client cert source exists, use the default one; otherwise the client cert
source is None.
The API endpoint is determined in the following order:
(1) if client_options.api_endpoint if provided, use the provided one.
(2) if GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is "always", use the
default mTLS endpoint; if the environment variabel is "never", use the default API
endpoint; otherwise if client cert source exists, use the default mTLS endpoint, otherwise
use the default API endpoint.
More details can be found at https://google.aip.dev/auth/4114.
| Parameter | |
|---|---|
| Name | Description | 
client_options | 
        
          google.api_core.client_options.ClientOptions
          Custom options for the client. Only the   | 
      
| Exceptions | |
|---|---|
| Type | Description | 
google.auth.exceptions.MutualTLSChannelError | 
        If any errors happen. | 
| Returns | |
|---|---|
| Type | Description | 
Tuple[str, Callable[[], Tuple[bytes, bytes]]] | 
        returns the API endpoint and the client cert source to use. | 
list_conversation_model_evaluations
list_conversation_model_evaluations(request: Optional[Union[google.cloud.dialogflow_v2.types.conversation_model.ListConversationModelEvaluationsRequest, dict]] = None, *, parent: Optional[str] = None, retry: Union[google.api_core.retry.Retry, google.api_core.gapic_v1.method._MethodDefault] = <_MethodDefault._DEFAULT_VALUE: <object object>>, timeout: Optional[float] = None, metadata: Sequence[Tuple[str, str]] = ())Lists evaluations of a conversation model.
from google.cloud import dialogflow_v2
def sample_list_conversation_model_evaluations():
    # Create a client
    client = dialogflow_v2.ConversationModelsClient()
    # Initialize request argument(s)
    request = dialogflow_v2.ListConversationModelEvaluationsRequest(
        parent="parent_value",
    )
    # Make the request
    page_result = client.list_conversation_model_evaluations(request=request)
    # Handle the response
    for response in page_result:
        print(response)
| Parameters | |
|---|---|
| Name | Description | 
request | 
        
          Union[google.cloud.dialogflow_v2.types.ListConversationModelEvaluationsRequest, dict]
          The request object. The request message for ConversationModels.ListConversationModelEvaluations  | 
      
parent | 
        
          str
          Required. The conversation model resource name. Format:   | 
      
retry | 
        
          google.api_core.retry.Retry
          Designation of what errors, if any, should be retried.  | 
      
timeout | 
        
          float
          The timeout for this request.  | 
      
metadata | 
        
          Sequence[Tuple[str, str]]
          Strings which should be sent along with the request as metadata.  | 
      
| Returns | |
|---|---|
| Type | Description | 
google.cloud.dialogflow_v2.services.conversation_models.pagers.ListConversationModelEvaluationsPager | 
        The response message for ConversationModels.ListConversationModelEvaluations Iterating over this object will yield results and resolve additional pages automatically. | 
list_conversation_models
list_conversation_models(request: Optional[Union[google.cloud.dialogflow_v2.types.conversation_model.ListConversationModelsRequest, dict]] = None, *, parent: Optional[str] = None, retry: Union[google.api_core.retry.Retry, google.api_core.gapic_v1.method._MethodDefault] = <_MethodDefault._DEFAULT_VALUE: <object object>>, timeout: Optional[float] = None, metadata: Sequence[Tuple[str, str]] = ())Lists conversation models.
from google.cloud import dialogflow_v2
def sample_list_conversation_models():
    # Create a client
    client = dialogflow_v2.ConversationModelsClient()
    # Initialize request argument(s)
    request = dialogflow_v2.ListConversationModelsRequest(
        parent="parent_value",
    )
    # Make the request
    page_result = client.list_conversation_models(request=request)
    # Handle the response
    for response in page_result:
        print(response)
| Parameters | |
|---|---|
| Name | Description | 
request | 
        
          Union[google.cloud.dialogflow_v2.types.ListConversationModelsRequest, dict]
          The request object. The request message for ConversationModels.ListConversationModels  | 
      
parent | 
        
          str
          Required. The project to list all conversation models for. Format:   | 
      
retry | 
        
          google.api_core.retry.Retry
          Designation of what errors, if any, should be retried.  | 
      
timeout | 
        
          float
          The timeout for this request.  | 
      
metadata | 
        
          Sequence[Tuple[str, str]]
          Strings which should be sent along with the request as metadata.  | 
      
| Returns | |
|---|---|
| Type | Description | 
google.cloud.dialogflow_v2.services.conversation_models.pagers.ListConversationModelsPager | 
        The response message for ConversationModels.ListConversationModels Iterating over this object will yield results and resolve additional pages automatically. | 
parse_common_billing_account_path
parse_common_billing_account_path(path: str)Parse a billing_account path into its component segments.
parse_common_folder_path
parse_common_folder_path(path: str)Parse a folder path into its component segments.
parse_common_location_path
parse_common_location_path(path: str)Parse a location path into its component segments.
parse_common_organization_path
parse_common_organization_path(path: str)Parse a organization path into its component segments.
parse_common_project_path
parse_common_project_path(path: str)Parse a project path into its component segments.
parse_conversation_dataset_path
parse_conversation_dataset_path(path: str)Parses a conversation_dataset path into its component segments.
parse_conversation_model_evaluation_path
parse_conversation_model_evaluation_path(path: str)Parses a conversation_model_evaluation path into its component segments.
parse_conversation_model_path
parse_conversation_model_path(path: str)Parses a conversation_model path into its component segments.
parse_document_path
parse_document_path(path: str)Parses a document path into its component segments.
undeploy_conversation_model
undeploy_conversation_model(request: Optional[Union[google.cloud.dialogflow_v2.types.conversation_model.UndeployConversationModelRequest, dict]] = None, *, retry: Union[google.api_core.retry.Retry, google.api_core.gapic_v1.method._MethodDefault] = <_MethodDefault._DEFAULT_VALUE: <object object>>, timeout: Optional[float] = None, metadata: Sequence[Tuple[str, str]] = ())Undeploys a model. If the model is not deployed this method has no effect. If the model is currently being used:
- For article suggestion, article suggestion will fallback to the default model if model is undeployed.
 
This method is a long-running
operation <https://cloud.google.com/dialogflow/es/docs/how/long-running-operations>__.
The returned Operation type has the following
method-specific fields:
metadata: xref_UndeployConversationModelOperationMetadataresponse: AnEmpty message <https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#empty>__
from google.cloud import dialogflow_v2
def sample_undeploy_conversation_model():
    # Create a client
    client = dialogflow_v2.ConversationModelsClient()
    # Initialize request argument(s)
    request = dialogflow_v2.UndeployConversationModelRequest(
        name="name_value",
    )
    # Make the request
    operation = client.undeploy_conversation_model(request=request)
    print("Waiting for operation to complete...")
    response = operation.result()
    # Handle the response
    print(response)
| Parameters | |
|---|---|
| Name | Description | 
request | 
        
          Union[google.cloud.dialogflow_v2.types.UndeployConversationModelRequest, dict]
          The request object. The request message for ConversationModels.UndeployConversationModel  | 
      
retry | 
        
          google.api_core.retry.Retry
          Designation of what errors, if any, should be retried.  | 
      
timeout | 
        
          float
          The timeout for this request.  | 
      
metadata | 
        
          Sequence[Tuple[str, str]]
          Strings which should be sent along with the request as metadata.  | 
      
| Returns | |
|---|---|
| Type | Description | 
google.api_core.operation.Operation | 
        An object representing a long-running operation. The result type for the operation will be google.protobuf.empty_pb2.Empty A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance: service Foo { rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty); } The JSON representation for Empty is empty JSON object {}. |