Privacy metric to compute for reidentification risk analysis.
This message has oneof_ fields (mutually exclusive fields).
For each oneof, at most one member field can be set at the same time.
Setting any member of the oneof automatically clears all other
members.
δ-presence metric, used to estimate how likely it is for an
attacker to figure out that one given individual appears in a
de-identified dataset. Similarly to the k-map metric, we cannot
compute δ-presence exactly without knowing the attack dataset,
so we use a statistical model instead.
Reidentifiability metric. This corresponds to a risk model
similar to what is called "journalist risk" in the literature,
except the attack dataset is statistically modeled instead of
being perfectly known. This can be done using publicly available
data (like the US Census), or using a custom statistical model
(indicated as one or several BigQuery tables), or by
extrapolating from the distribution of values in the input
dataset.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2025-09-04 UTC."],[],[],null,["# Class PrivacyMetric (3.31.0)\n\nVersion latestkeyboard_arrow_down\n\n- [3.31.0 (latest)](/python/docs/reference/dlp/latest/google.cloud.dlp_v2.types.PrivacyMetric)\n- [3.30.0](/python/docs/reference/dlp/3.30.0/google.cloud.dlp_v2.types.PrivacyMetric)\n- [3.29.0](/python/docs/reference/dlp/3.29.0/google.cloud.dlp_v2.types.PrivacyMetric)\n- [3.28.0](/python/docs/reference/dlp/3.28.0/google.cloud.dlp_v2.types.PrivacyMetric)\n- [3.27.0](/python/docs/reference/dlp/3.27.0/google.cloud.dlp_v2.types.PrivacyMetric)\n- [3.26.0](/python/docs/reference/dlp/3.26.0/google.cloud.dlp_v2.types.PrivacyMetric)\n- [3.25.1](/python/docs/reference/dlp/3.25.1/google.cloud.dlp_v2.types.PrivacyMetric)\n- [3.24.0](/python/docs/reference/dlp/3.24.0/google.cloud.dlp_v2.types.PrivacyMetric)\n- [3.23.0](/python/docs/reference/dlp/3.23.0/google.cloud.dlp_v2.types.PrivacyMetric)\n- [3.22.0](/python/docs/reference/dlp/3.22.0/google.cloud.dlp_v2.types.PrivacyMetric)\n- [3.20.0](/python/docs/reference/dlp/3.20.0/google.cloud.dlp_v2.types.PrivacyMetric)\n- [3.19.0](/python/docs/reference/dlp/3.19.0/google.cloud.dlp_v2.types.PrivacyMetric)\n- [3.18.1](/python/docs/reference/dlp/3.18.1/google.cloud.dlp_v2.types.PrivacyMetric)\n- [3.17.0](/python/docs/reference/dlp/3.17.0/google.cloud.dlp_v2.types.PrivacyMetric)\n- [3.16.0](/python/docs/reference/dlp/3.16.0/google.cloud.dlp_v2.types.PrivacyMetric)\n- [3.15.3](/python/docs/reference/dlp/3.15.3/google.cloud.dlp_v2.types.PrivacyMetric)\n- [3.14.0](/python/docs/reference/dlp/3.14.0/google.cloud.dlp_v2.types.PrivacyMetric)\n- [3.13.0](/python/docs/reference/dlp/3.13.0/google.cloud.dlp_v2.types.PrivacyMetric)\n- [3.12.3](/python/docs/reference/dlp/3.12.3/google.cloud.dlp_v2.types.PrivacyMetric)\n- [3.11.1](/python/docs/reference/dlp/3.11.1/google.cloud.dlp_v2.types.PrivacyMetric)\n- [3.10.1](/python/docs/reference/dlp/3.10.1/google.cloud.dlp_v2.types.PrivacyMetric)\n- [3.9.2](/python/docs/reference/dlp/3.9.2/google.cloud.dlp_v2.types.PrivacyMetric)\n- [3.8.1](/python/docs/reference/dlp/3.8.1/google.cloud.dlp_v2.types.PrivacyMetric)\n- [3.7.1](/python/docs/reference/dlp/3.7.1/google.cloud.dlp_v2.types.PrivacyMetric)\n- [3.6.2](/python/docs/reference/dlp/3.6.2/google.cloud.dlp_v2.types.PrivacyMetric)\n- [3.5.0](/python/docs/reference/dlp/3.5.0/google.cloud.dlp_v2.types.PrivacyMetric)\n- [3.4.0](/python/docs/reference/dlp/3.4.0/google.cloud.dlp_v2.types.PrivacyMetric)\n- [3.3.1](/python/docs/reference/dlp/3.3.1/google.cloud.dlp_v2.types.PrivacyMetric)\n- [3.2.4](/python/docs/reference/dlp/3.2.4/google.cloud.dlp_v2.types.PrivacyMetric)\n- [3.1.1](/python/docs/reference/dlp/3.1.1/google.cloud.dlp_v2.types.PrivacyMetric)\n- [3.0.1](/python/docs/reference/dlp/3.0.1/google.cloud.dlp_v2.types.PrivacyMetric)\n- [2.0.2](/python/docs/reference/dlp/2.0.2/google.cloud.dlp_v2.types.PrivacyMetric)\n- [1.0.2](/python/docs/reference/dlp/1.0.2/google.cloud.dlp_v2.types.PrivacyMetric)\n- [0.15.2](/python/docs/reference/dlp/0.15.2/google.cloud.dlp_v2.types.PrivacyMetric)\n- [0.14.0](/python/docs/reference/dlp/0.14.0/google.cloud.dlp_v2.types.PrivacyMetric)\n- [0.13.0](/python/docs/reference/dlp/0.13.0/google.cloud.dlp_v2.types.PrivacyMetric)\n- [0.12.1](/python/docs/reference/dlp/0.12.1/google.cloud.dlp_v2.types.PrivacyMetric) \n\n PrivacyMetric(mapping=None, *, ignore_unknown_fields=False, **kwargs)\n\nPrivacy metric to compute for reidentification risk analysis.\n\nThis message has `oneof`_ fields (mutually exclusive fields).\nFor each oneof, at most one member field can be set at the same time.\nSetting any member of the oneof automatically clears all other\nmembers.\n\n.. _oneof: \u003chttps://proto-plus-python.readthedocs.io/en/stable/fields.html#oneofs-mutually-exclusive-fields\u003e\n\nClasses\n-------\n\n### CategoricalStatsConfig\n\n CategoricalStatsConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)\n\nCompute numerical stats over an individual column, including\nnumber of distinct values and value count distribution.\n\n### DeltaPresenceEstimationConfig\n\n DeltaPresenceEstimationConfig(\n mapping=None, *, ignore_unknown_fields=False, **kwargs\n )\n\nδ-presence metric, used to estimate how likely it is for an\nattacker to figure out that one given individual appears in a\nde-identified dataset. Similarly to the k-map metric, we cannot\ncompute δ-presence exactly without knowing the attack dataset,\nso we use a statistical model instead.\n\n### KAnonymityConfig\n\n KAnonymityConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)\n\nk-anonymity metric, used for analysis of reidentification\nrisk.\n\n### KMapEstimationConfig\n\n KMapEstimationConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)\n\nReidentifiability metric. This corresponds to a risk model\nsimilar to what is called \"journalist risk\" in the literature,\nexcept the attack dataset is statistically modeled instead of\nbeing perfectly known. This can be done using publicly available\ndata (like the US Census), or using a custom statistical model\n(indicated as one or several BigQuery tables), or by\nextrapolating from the distribution of values in the input\ndataset.\n\n### LDiversityConfig\n\n LDiversityConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)\n\nl-diversity metric, used for analysis of reidentification\nrisk.\n\n### NumericalStatsConfig\n\n NumericalStatsConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)\n\nCompute numerical stats over an individual column, including\nmin, max, and quantiles."]]