Package Methods (0.8.0)

Summary of entries of Methods for langchain-google-bigtable.

langchain_google_bigtable.chat_message_history.init_chat_history_table

init_chat_history_table(
    instance_id: str,
    table_id: str,
    client: typing.Optional[google.cloud.bigtable.client.Client] = None,
) -> None

Create a table to store chat history.

See more: langchain_google_bigtable.chat_message_history.init_chat_history_table

langchain_google_bigtable.key_value_store.init_key_value_store_table

init_key_value_store_table(
    instance_id: str,
    table_id: str,
    project_id: typing.Optional[str] = None,
    client: typing.Optional[google.cloud.bigtable.client.Client] = None,
    column_families: typing.List[str] = ["kv"],
) -> None

Create a table for saving of LangChain Key-value pairs.

See more: langchain_google_bigtable.key_value_store.init_key_value_store_table

langchain_google_bigtable.loader.init_document_table

init_document_table(
    instance_id: str,
    table_id: str,
    client: typing.Optional[google.cloud.bigtable.client.Client] = None,
    content_column_family: str = "langchain",
    metadata_mappings: typing.List[
        langchain_google_bigtable.loader.MetadataMapping
    ] = [],
    metadata_as_json_column_family: typing.Optional[str] = None,
) -> None

Create a table for saving of langchain documents.

See more: langchain_google_bigtable.loader.init_document_table

langchain_google_bigtable.vector_store.init_vector_store_table

init_vector_store_table(
    instance_id: str,
    table_id: str,
    project_id: typing.Optional[str] = None,
    client: typing.Optional[google.cloud.bigtable.client.Client] = None,
    content_column_family: str = "langchain",
    embedding_column_family: str = "langchain",
) -> None

Creates a Bigtable table with the necessary column families for the vector store.

See more: langchain_google_bigtable.vector_store.init_vector_store_table

langchain_google_bigtable.chat_message_history.BigtableChatMessageHistory.add_message

add_message(message: langchain_core.messages.base.BaseMessage) -> None

langchain_google_bigtable.chat_message_history.BigtableChatMessageHistory.add_messages

add_messages(
    messages: typing.Sequence[langchain_core.messages.base.BaseMessage],
) -> None

langchain_google_bigtable.chat_message_history.BigtableChatMessageHistory.clear

clear() -> None

langchain_google_bigtable.engine.BigtableEngine

BigtableEngine(
    key: object,
    client: typing.Optional[
        google.cloud.bigtable.data._async.client.BigtableDataClientAsync
    ],
    loop: typing.Optional[asyncio.events.AbstractEventLoop],
    thread: typing.Optional[threading.Thread],
)

Initializes the engine with a running event loop and a client.

See more: langchain_google_bigtable.engine.BigtableEngine

langchain_google_bigtable.engine.BigtableEngine.__start_background_loop

__start_background_loop(
    project_id: typing.Optional[str],
    credentials: typing.Optional[google.auth.credentials.Credentials] = None,
    client_options: typing.Optional[typing.Any] = None,
    **kwargs: typing.Any
) -> concurrent.futures._base.Future

Creates and starts the default background loop and thread.

See more: langchain_google_bigtable.engine.BigtableEngine.__start_background_loop

langchain_google_bigtable.engine.BigtableEngine._create

_create(
    project_id: typing.Optional[str] = None,
    loop: typing.Optional[asyncio.events.AbstractEventLoop] = None,
    thread: typing.Optional[threading.Thread] = None,
    client: typing.Optional[
        google.cloud.bigtable.data._async.client.BigtableDataClientAsync
    ] = None,
    credentials: typing.Optional[google.auth.credentials.Credentials] = None,
    client_options: typing.Optional[typing.Any] = None,
    **kwargs: typing.Any
) -> langchain_google_bigtable.engine.BigtableEngine

Asynchronously instantiates the BigtableEngine Object.

See more: langchain_google_bigtable.engine.BigtableEngine._create

langchain_google_bigtable.engine.BigtableEngine._run_as_async

_run_as_async(coro: typing.Any) -> typing.Any

Runs a coroutine on the background loop without blocking the main loop.

See more: langchain_google_bigtable.engine.BigtableEngine._run_as_async

langchain_google_bigtable.engine.BigtableEngine._run_as_sync

_run_as_sync(coro: typing.Any) -> typing.Any

Runs a coroutine on the background loop and waits for the result.

See more: langchain_google_bigtable.engine.BigtableEngine._run_as_sync

langchain_google_bigtable.engine.BigtableEngine.async_initialize

async_initialize(
    project_id: typing.Optional[str] = None,
    credentials: typing.Optional[google.auth.credentials.Credentials] = None,
    client_options: typing.Optional[typing.Any] = None,
    **kwargs: typing.Any
) -> langchain_google_bigtable.engine.BigtableEngine

Creates a BigtableEngine instance with a background event loop and a new data client asynchronously .

See more: langchain_google_bigtable.engine.BigtableEngine.async_initialize

langchain_google_bigtable.engine.BigtableEngine.close

close() -> None

Closes the underlying client for this specific engine instance.

See more: langchain_google_bigtable.engine.BigtableEngine.close

langchain_google_bigtable.engine.BigtableEngine.get_async_table

get_async_table(
    instance_id: str,
    table_id: str,
    app_profile_id: typing.Optional[str] = None,
    **kwargs: typing.Any
) -> google.cloud.bigtable.data._async.client.TableAsync

Returns the table using this class's client.

See more: langchain_google_bigtable.engine.BigtableEngine.get_async_table

langchain_google_bigtable.engine.BigtableEngine.initialize

initialize(
    project_id: typing.Optional[str] = None,
    credentials: typing.Optional[google.auth.credentials.Credentials] = None,
    client_options: typing.Optional[typing.Any] = None,
    **kwargs: typing.Any
) -> langchain_google_bigtable.engine.BigtableEngine

Creates a BigtableEngine instance with a background event loop and a new data client synchronously.

See more: langchain_google_bigtable.engine.BigtableEngine.initialize

langchain_google_bigtable.engine.BigtableEngine.shutdown_default_loop

shutdown_default_loop() -> None

Closes the default class-level shared loop and terminates the thread associated with it.

See more: langchain_google_bigtable.engine.BigtableEngine.shutdown_default_loop

langchain_google_bigtable.key_value_store.BigtableByteStore._get_async_store

_get_async_store(
    **kwargs: typing.Any,
) -> langchain_google_bigtable.async_key_value_store.AsyncBigtableByteStore

Returns a AsyncBigtableByteStore object to be used for data operations.

See more: langchain_google_bigtable.key_value_store.BigtableByteStore._get_async_store

langchain_google_bigtable.key_value_store.BigtableByteStore.amdelete

amdelete(keys: typing.Sequence[str]) -> None

Asynchronously deletes key-value pairs from the Bigtable.

See more: langchain_google_bigtable.key_value_store.BigtableByteStore.amdelete

langchain_google_bigtable.key_value_store.BigtableByteStore.amget

amget(keys: typing.Sequence[str]) -> typing.List[typing.Optional[bytes]]

Asynchronously retrieves values for a sequence of keys.

See more: langchain_google_bigtable.key_value_store.BigtableByteStore.amget

langchain_google_bigtable.key_value_store.BigtableByteStore.amset

amset(key_value_pairs: typing.Sequence[typing.Tuple[str, bytes]]) -> None

Asynchronously stores key-value pairs in the Bigtable.

See more: langchain_google_bigtable.key_value_store.BigtableByteStore.amset

langchain_google_bigtable.key_value_store.BigtableByteStore.ayield_keys

ayield_keys(*, prefix: typing.Optional[str] = None) -> typing.AsyncIterator[str]

Asynchronously yields keys matching a given prefix.

See more: langchain_google_bigtable.key_value_store.BigtableByteStore.ayield_keys

langchain_google_bigtable.key_value_store.BigtableByteStore.create

create(
    instance_id: str,
    table_id: str,
    *,
    engine: typing.Optional[langchain_google_bigtable.engine.BigtableEngine] = None,
    project_id: typing.Optional[str] = None,
    app_profile_id: typing.Optional[str] = None,
    column_family: str = "kv",
    column_qualifier: typing.Union[str, bytes] = b"val",
    credentials: typing.Optional[google.auth.credentials.Credentials] = None,
    client_options: typing.Optional[typing.Dict[str, typing.Any]] = None,
    **kwargs: typing.Any
) -> langchain_google_bigtable.key_value_store.BigtableByteStore

Creates an async-initialized instance of the BigtableByteStore.

See more: langchain_google_bigtable.key_value_store.BigtableByteStore.create

langchain_google_bigtable.key_value_store.BigtableByteStore.create_sync

create_sync(
    instance_id: str,
    table_id: str,
    *,
    engine: typing.Optional[langchain_google_bigtable.engine.BigtableEngine] = None,
    project_id: typing.Optional[str] = None,
    app_profile_id: typing.Optional[str] = None,
    column_family: str = "kv",
    column_qualifier: typing.Union[str, bytes] = b"val",
    credentials: typing.Optional[google.auth.credentials.Credentials] = None,
    client_options: typing.Optional[typing.Dict[str, typing.Any]] = None,
    **kwargs: typing.Any
) -> langchain_google_bigtable.key_value_store.BigtableByteStore

Creates a sync-initialized instance of the BigtableByteStore.

See more: langchain_google_bigtable.key_value_store.BigtableByteStore.create_sync

langchain_google_bigtable.key_value_store.BigtableByteStore.get_engine

get_engine() -> langchain_google_bigtable.engine.BigtableEngine

Returns the BigtableEngine being used for this object.

See more: langchain_google_bigtable.key_value_store.BigtableByteStore.get_engine

langchain_google_bigtable.key_value_store.BigtableByteStore.mdelete

mdelete(keys: typing.Sequence[str]) -> None

Synchronously deletes key-value pairs from the Bigtable.

See more: langchain_google_bigtable.key_value_store.BigtableByteStore.mdelete

langchain_google_bigtable.key_value_store.BigtableByteStore.mget

mget(keys: typing.Sequence[str]) -> typing.List[typing.Optional[bytes]]

Synchronously retrieves values for a sequence of keys.

See more: langchain_google_bigtable.key_value_store.BigtableByteStore.mget

langchain_google_bigtable.key_value_store.BigtableByteStore.mset

mset(key_value_pairs: typing.Sequence[typing.Tuple[str, bytes]]) -> None

Synchronously stores key-value pairs in the Bigtable.

See more: langchain_google_bigtable.key_value_store.BigtableByteStore.mset

langchain_google_bigtable.key_value_store.BigtableByteStore.yield_keys

yield_keys(*, prefix: typing.Optional[str] = None) -> typing.Iterator[str]

Synchronously yields keys matching a given prefix.

See more: langchain_google_bigtable.key_value_store.BigtableByteStore.yield_keys

langchain_google_bigtable.loader.BigtableLoader

BigtableLoader(
    instance_id: str,
    table_id: str,
    row_set: typing.Optional[google.cloud.bigtable.row_set.RowSet] = None,
    filter: typing.Optional[google.cloud.bigtable.row_filters.RowFilter] = None,
    client: typing.Optional[google.cloud.bigtable.client.Client] = None,
    content_encoding: langchain_google_bigtable.loader.Encoding = Encoding.UTF8,
    content_column_family: str = "langchain",
    content_column_name: str = "content",
    metadata_mappings: typing.List[
        langchain_google_bigtable.loader.MetadataMapping
    ] = [],
    metadata_as_json_column_family: typing.Optional[str] = None,
    metadata_as_json_column_name: typing.Optional[str] = None,
    metadata_as_json_encoding: langchain_google_bigtable.loader.Encoding = Encoding.UTF8,
)

Initialize Bigtable document loader.

See more: langchain_google_bigtable.loader.BigtableLoader

langchain_google_bigtable.loader.BigtableLoader.lazy_load

lazy_load() -> typing.Iterator[langchain_core.documents.base.Document]

A lazy loader for Documents.

See more: langchain_google_bigtable.loader.BigtableLoader.lazy_load

langchain_google_bigtable.loader.BigtableLoader.load

load() -> typing.List[langchain_core.documents.base.Document]

Load data into Document objects.

See more: langchain_google_bigtable.loader.BigtableLoader.load

langchain_google_bigtable.loader.BigtableSaver

BigtableSaver(
    instance_id: str,
    table_id: str,
    client: typing.Optional[google.cloud.bigtable.client.Client] = None,
    content_encoding: langchain_google_bigtable.loader.Encoding = Encoding.UTF8,
    content_column_family: str = "langchain",
    content_column_name: str = "content",
    metadata_mappings: typing.List[
        langchain_google_bigtable.loader.MetadataMapping
    ] = [],
    metadata_as_json_column_family: typing.Optional[str] = None,
    metadata_as_json_column_name: typing.Optional[str] = None,
    metadata_as_json_encoding: langchain_google_bigtable.loader.Encoding = Encoding.UTF8,
)

Initialize Bigtable document saver.

See more: langchain_google_bigtable.loader.BigtableSaver

langchain_google_bigtable.loader.BigtableSaver.add_documents

add_documents(docs: typing.List[langchain_core.documents.base.Document]) -> None

Save documents in the DocumentSaver table.

See more: langchain_google_bigtable.loader.BigtableSaver.add_documents

langchain_google_bigtable.loader.BigtableSaver.delete

delete(docs: typing.List[langchain_core.documents.base.Document]) -> None

Delete all instances of a document from the DocumentSaver table by matching the entire Document object.

See more: langchain_google_bigtable.loader.BigtableSaver.delete

langchain_google_bigtable.vector_store.BigtableVectorStore

BigtableVectorStore(instance_id: str, table_id: str, embedding_service: langchain_core.embeddings.embeddings.Embeddings, collection: str, content_column: langchain_google_bigtable.async_vector_store.ColumnConfig = ColumnConfig(column_qualifier='content', column_family='langchain', encoding=

Initializes the BigtableVectorStore.

See more: langchain_google_bigtable.vector_store.BigtableVectorStore

langchain_google_bigtable.vector_store.BigtableVectorStore._get_async_store

_get_async_store() -> (
    langchain_google_bigtable.async_vector_store.AsyncBigtableVectorStore
)

Lazily initializes and returns the underlying async store.

See more: langchain_google_bigtable.vector_store.BigtableVectorStore._get_async_store

langchain_google_bigtable.vector_store.BigtableVectorStore.aadd_documents

aadd_documents(
    documents: typing.List[langchain_core.documents.base.Document],
    ids: typing.Optional[list] = None,
    **kwargs: typing.Any
) -> typing.List[str]

Run more documents through the embeddings and add to the vectorstore.

See more: langchain_google_bigtable.vector_store.BigtableVectorStore.aadd_documents

langchain_google_bigtable.vector_store.BigtableVectorStore.aadd_texts

aadd_texts(
    texts: typing.Iterable[str],
    metadatas: typing.Optional[typing.List[dict]] = None,
    ids: typing.Optional[list] = None,
    **kwargs: typing.Any
) -> typing.List[str]

Run more texts through the embeddings and add to the vectorstore.

See more: langchain_google_bigtable.vector_store.BigtableVectorStore.aadd_texts

langchain_google_bigtable.vector_store.BigtableVectorStore.add_documents

add_documents(
    documents: typing.List[langchain_core.documents.base.Document],
    ids: typing.Optional[list] = None,
    **kwargs: typing.Any
) -> typing.List[str]

Run more documents through the embeddings and add to the vectorstore.

See more: langchain_google_bigtable.vector_store.BigtableVectorStore.add_documents

langchain_google_bigtable.vector_store.BigtableVectorStore.add_texts

add_texts(
    texts: typing.Iterable[str],
    metadatas: typing.Optional[typing.List[typing.Dict]] = None,
    ids: typing.Optional[list] = None,
    **kwargs: typing.Any
) -> typing.List[str]

Run more texts through the embeddings and add to the vectorstore.

See more: langchain_google_bigtable.vector_store.BigtableVectorStore.add_texts

langchain_google_bigtable.vector_store.BigtableVectorStore.adelete

adelete(
    ids: typing.Optional[typing.List[str]] = None, **kwargs: typing.Any
) -> typing.Optional[bool]

langchain_google_bigtable.vector_store.BigtableVectorStore.afrom_documents

afrom_documents(
    documents: typing.List[langchain_core.documents.base.Document],
    embedding: langchain_core.embeddings.embeddings.Embeddings,
    ids: typing.Optional[list] = None,
    **kwargs: typing.Any
) -> langchain_google_bigtable.vector_store.BigtableVectorStore

Return VectorStore initialized from documents and embeddings.

See more: langchain_google_bigtable.vector_store.BigtableVectorStore.afrom_documents

langchain_google_bigtable.vector_store.BigtableVectorStore.afrom_texts

afrom_texts(
    texts: typing.List[str],
    embedding: langchain_core.embeddings.embeddings.Embeddings,
    metadatas: typing.Optional[typing.List[dict]] = None,
    ids: typing.Optional[list] = None,
    **kwargs: typing.Any
) -> langchain_google_bigtable.vector_store.BigtableVectorStore

Return VectorStore initialized from texts and embeddings.

See more: langchain_google_bigtable.vector_store.BigtableVectorStore.afrom_texts

langchain_google_bigtable.vector_store.BigtableVectorStore.aget_by_ids

aget_by_ids(
    ids: typing.Sequence[str],
) -> typing.List[langchain_core.documents.base.Document]

langchain_google_bigtable.vector_store.BigtableVectorStore.amax_marginal_relevance_search

amax_marginal_relevance_search(
    query: str,
    k: int = 4,
    fetch_k: int = 20,
    lambda_mult: float = 0.5,
    query_parameters: typing.Optional[
        langchain_google_bigtable.async_vector_store.QueryParameters
    ] = None,
    **kwargs: typing.Any
) -> typing.List[langchain_core.documents.base.Document]

Return docs selected using the maximal marginal relevance.

See more: langchain_google_bigtable.vector_store.BigtableVectorStore.amax_marginal_relevance_search

langchain_google_bigtable.vector_store.BigtableVectorStore.amax_marginal_relevance_search_by_vector

amax_marginal_relevance_search_by_vector(
    embedding: typing.List[float],
    k: int = 4,
    fetch_k: int = 20,
    lambda_mult: float = 0.5,
    query_parameters: typing.Optional[
        langchain_google_bigtable.async_vector_store.QueryParameters
    ] = None,
    **kwargs: typing.Any
) -> typing.List[langchain_core.documents.base.Document]

Return docs selected using the maximal marginal relevance.

See more: langchain_google_bigtable.vector_store.BigtableVectorStore.amax_marginal_relevance_search_by_vector

langchain_google_bigtable.vector_store.BigtableVectorStore.as_retriever

as_retriever(
    **kwargs: typing.Any,
) -> langchain_core.vectorstores.base.VectorStoreRetriever

Return VectorStoreRetriever initialized from this VectorStore.

See more: langchain_google_bigtable.vector_store.BigtableVectorStore.as_retriever

langchain_google_bigtable.vector_store.BigtableVectorStore.asimilarity_search

asimilarity_search(
    query: str,
    k: int = 4,
    query_parameters: typing.Optional[
        langchain_google_bigtable.async_vector_store.QueryParameters
    ] = None,
    **kwargs: typing.Any
) -> typing.List[langchain_core.documents.base.Document]

langchain_google_bigtable.vector_store.BigtableVectorStore.asimilarity_search_by_vector

asimilarity_search_by_vector(
    embedding: typing.List[float],
    k: int = 4,
    query_parameters: typing.Optional[
        langchain_google_bigtable.async_vector_store.QueryParameters
    ] = None,
    **kwargs: typing.Any
) -> typing.List[langchain_core.documents.base.Document]

langchain_google_bigtable.vector_store.BigtableVectorStore.asimilarity_search_with_relevance_scores

asimilarity_search_with_relevance_scores(
    query: str,
    k: int = 4,
    query_parameters: typing.Optional[
        langchain_google_bigtable.async_vector_store.QueryParameters
    ] = None,
    **kwargs: typing.Any
) -> typing.List[typing.Tuple[langchain_core.documents.base.Document, float]]

langchain_google_bigtable.vector_store.BigtableVectorStore.asimilarity_search_with_score

asimilarity_search_with_score(
    query: str,
    k: int = 4,
    query_parameters: typing.Optional[
        langchain_google_bigtable.async_vector_store.QueryParameters
    ] = None,
    **kwargs: typing.Any
) -> typing.List[typing.Tuple[langchain_core.documents.base.Document, float]]

langchain_google_bigtable.vector_store.BigtableVectorStore.asimilarity_search_with_score_by_vector

asimilarity_search_with_score_by_vector(
    embedding: typing.List[float],
    k: int = 4,
    query_parameters: typing.Optional[
        langchain_google_bigtable.async_vector_store.QueryParameters
    ] = None,
    **kwargs: typing.Any
) -> typing.List[typing.Tuple[langchain_core.documents.base.Document, float]]

langchain_google_bigtable.vector_store.BigtableVectorStore.close

close() -> None

langchain_google_bigtable.vector_store.BigtableVectorStore.create

create(instance_id: str, table_id: str, embedding_service: langchain_core.embeddings.embeddings.Embeddings, collection: str, engine: typing.Optional[langchain_google_bigtable.engine.BigtableEngine] = None, content_column: langchain_google_bigtable.async_vector_store.ColumnConfig = ColumnConfig(column_qualifier='content', column_family='langchain', encoding=

Asynchronously initializes the engine and creates an instance of the vector store.

See more: langchain_google_bigtable.vector_store.BigtableVectorStore.create

langchain_google_bigtable.vector_store.BigtableVectorStore.create_sync

create_sync(instance_id: str, table_id: str, embedding_service: langchain_core.embeddings.embeddings.Embeddings, collection: str, engine: typing.Optional[langchain_google_bigtable.engine.BigtableEngine] = None, content_column: langchain_google_bigtable.async_vector_store.ColumnConfig = ColumnConfig(column_qualifier='content', column_family='langchain', encoding=

Synchronously initializes the engine and creates an instance of the vector store.

See more: langchain_google_bigtable.vector_store.BigtableVectorStore.create_sync

langchain_google_bigtable.vector_store.BigtableVectorStore.delete

delete(
    ids: typing.Optional[typing.List[str]] = None, **kwargs: typing.Any
) -> typing.Optional[bool]

langchain_google_bigtable.vector_store.BigtableVectorStore.from_documents

from_documents(
    documents: typing.List[langchain_core.documents.base.Document],
    embedding: langchain_core.embeddings.embeddings.Embeddings,
    ids: typing.Optional[list] = None,
    **kwargs: typing.Any
) -> langchain_google_bigtable.vector_store.BigtableVectorStore

Return VectorStore initialized from documents and embeddings.

See more: langchain_google_bigtable.vector_store.BigtableVectorStore.from_documents

langchain_google_bigtable.vector_store.BigtableVectorStore.from_texts

from_texts(
    texts: typing.List[str],
    embedding: langchain_core.embeddings.embeddings.Embeddings,
    metadatas: typing.Optional[typing.List[dict]] = None,
    ids: typing.Optional[list] = None,
    **kwargs: typing.Any
) -> langchain_google_bigtable.vector_store.BigtableVectorStore

Return VectorStore initialized from texts and embeddings.

See more: langchain_google_bigtable.vector_store.BigtableVectorStore.from_texts

langchain_google_bigtable.vector_store.BigtableVectorStore.get_by_ids

get_by_ids(
    ids: typing.Sequence[str],
) -> typing.List[langchain_core.documents.base.Document]

langchain_google_bigtable.vector_store.BigtableVectorStore.get_engine

get_engine() -> typing.Optional[langchain_google_bigtable.engine.BigtableEngine]

langchain_google_bigtable.vector_store.BigtableVectorStore.max_marginal_relevance_search

max_marginal_relevance_search(
    query: str,
    k: int = 4,
    fetch_k: int = 20,
    lambda_mult: float = 0.5,
    query_parameters: typing.Optional[
        langchain_google_bigtable.async_vector_store.QueryParameters
    ] = None,
    **kwargs: typing.Any
) -> typing.List[langchain_core.documents.base.Document]

Return docs selected using the maximal marginal relevance.

See more: langchain_google_bigtable.vector_store.BigtableVectorStore.max_marginal_relevance_search

langchain_google_bigtable.vector_store.BigtableVectorStore.max_marginal_relevance_search_by_vector

max_marginal_relevance_search_by_vector(
    embedding: typing.List[float],
    k: int = 4,
    fetch_k: int = 20,
    lambda_mult: float = 0.5,
    query_parameters: typing.Optional[
        langchain_google_bigtable.async_vector_store.QueryParameters
    ] = None,
    **kwargs: typing.Any
) -> typing.List[langchain_core.documents.base.Document]

Return docs selected using the maximal marginal relevance.

See more: langchain_google_bigtable.vector_store.BigtableVectorStore.max_marginal_relevance_search_by_vector

langchain_google_bigtable.vector_store.BigtableVectorStore.similarity_search

similarity_search(
    query: str,
    k: int = 4,
    query_parameters: typing.Optional[
        langchain_google_bigtable.async_vector_store.QueryParameters
    ] = None,
    **kwargs: typing.Any
) -> typing.List[langchain_core.documents.base.Document]

langchain_google_bigtable.vector_store.BigtableVectorStore.similarity_search_by_vector

similarity_search_by_vector(
    embedding: typing.List[float],
    k: int = 4,
    query_parameters: typing.Optional[
        langchain_google_bigtable.async_vector_store.QueryParameters
    ] = None,
    **kwargs: typing.Any
) -> typing.List[langchain_core.documents.base.Document]

langchain_google_bigtable.vector_store.BigtableVectorStore.similarity_search_with_relevance_scores

similarity_search_with_relevance_scores(
    query: str,
    k: int = 4,
    query_parameters: typing.Optional[
        langchain_google_bigtable.async_vector_store.QueryParameters
    ] = None,
    **kwargs: typing.Any
) -> typing.List[typing.Tuple[langchain_core.documents.base.Document, float]]

langchain_google_bigtable.vector_store.BigtableVectorStore.similarity_search_with_score

similarity_search_with_score(
    query: str,
    k: int = 4,
    query_parameters: typing.Optional[
        langchain_google_bigtable.async_vector_store.QueryParameters
    ] = None,
    **kwargs: typing.Any
) -> typing.List[typing.Tuple[langchain_core.documents.base.Document, float]]

langchain_google_bigtable.vector_store.BigtableVectorStore.similarity_search_with_score_by_vector

similarity_search_with_score_by_vector(
    embedding: typing.List[float],
    k: int = 4,
    query_parameters: typing.Optional[
        langchain_google_bigtable.async_vector_store.QueryParameters
    ] = None,
    **kwargs: typing.Any
) -> typing.List[typing.Tuple[langchain_core.documents.base.Document, float]]