Summary of entries of Methods for langchain-google-bigtable.
langchain_google_bigtable.chat_message_history.init_chat_history_table
init_chat_history_table(
instance_id: str,
table_id: str,
client: typing.Optional[google.cloud.bigtable.client.Client] = None,
) -> None
Create a table to store chat history.
See more: langchain_google_bigtable.chat_message_history.init_chat_history_table
langchain_google_bigtable.key_value_store.init_key_value_store_table
init_key_value_store_table(
instance_id: str,
table_id: str,
project_id: typing.Optional[str] = None,
client: typing.Optional[google.cloud.bigtable.client.Client] = None,
column_families: typing.List[str] = ["kv"],
) -> None
Create a table for saving of LangChain Key-value pairs.
See more: langchain_google_bigtable.key_value_store.init_key_value_store_table
langchain_google_bigtable.loader.init_document_table
init_document_table(
instance_id: str,
table_id: str,
client: typing.Optional[google.cloud.bigtable.client.Client] = None,
content_column_family: str = "langchain",
metadata_mappings: typing.List[
langchain_google_bigtable.loader.MetadataMapping
] = [],
metadata_as_json_column_family: typing.Optional[str] = None,
) -> None
Create a table for saving of langchain documents.
See more: langchain_google_bigtable.loader.init_document_table
langchain_google_bigtable.vector_store.init_vector_store_table
init_vector_store_table(
instance_id: str,
table_id: str,
project_id: typing.Optional[str] = None,
client: typing.Optional[google.cloud.bigtable.client.Client] = None,
content_column_family: str = "langchain",
embedding_column_family: str = "langchain",
) -> None
Creates a Bigtable table with the necessary column families for the vector store.
See more: langchain_google_bigtable.vector_store.init_vector_store_table
langchain_google_bigtable.chat_message_history.BigtableChatMessageHistory.add_message
add_message(message: langchain_core.messages.base.BaseMessage) -> None
Write a message to the table.
See more: langchain_google_bigtable.chat_message_history.BigtableChatMessageHistory.add_message
langchain_google_bigtable.chat_message_history.BigtableChatMessageHistory.add_messages
add_messages(
messages: typing.Sequence[langchain_core.messages.base.BaseMessage],
) -> None
Write messages to the table.
See more: langchain_google_bigtable.chat_message_history.BigtableChatMessageHistory.add_messages
langchain_google_bigtable.chat_message_history.BigtableChatMessageHistory.clear
clear() -> None
Clear session memory from DB.
See more: langchain_google_bigtable.chat_message_history.BigtableChatMessageHistory.clear
langchain_google_bigtable.engine.BigtableEngine
BigtableEngine(
key: object,
client: typing.Optional[
google.cloud.bigtable.data._async.client.BigtableDataClientAsync
],
loop: typing.Optional[asyncio.events.AbstractEventLoop],
thread: typing.Optional[threading.Thread],
)
Initializes the engine with a running event loop and a client.
langchain_google_bigtable.engine.BigtableEngine.__start_background_loop
__start_background_loop(
project_id: typing.Optional[str],
credentials: typing.Optional[google.auth.credentials.Credentials] = None,
client_options: typing.Optional[typing.Any] = None,
**kwargs: typing.Any
) -> concurrent.futures._base.Future
Creates and starts the default background loop and thread.
See more: langchain_google_bigtable.engine.BigtableEngine.__start_background_loop
langchain_google_bigtable.engine.BigtableEngine._create
_create(
project_id: typing.Optional[str] = None,
loop: typing.Optional[asyncio.events.AbstractEventLoop] = None,
thread: typing.Optional[threading.Thread] = None,
client: typing.Optional[
google.cloud.bigtable.data._async.client.BigtableDataClientAsync
] = None,
credentials: typing.Optional[google.auth.credentials.Credentials] = None,
client_options: typing.Optional[typing.Any] = None,
**kwargs: typing.Any
) -> langchain_google_bigtable.engine.BigtableEngine
Asynchronously instantiates the BigtableEngine Object.
See more: langchain_google_bigtable.engine.BigtableEngine._create
langchain_google_bigtable.engine.BigtableEngine._run_as_async
_run_as_async(coro: typing.Any) -> typing.Any
Runs a coroutine on the background loop without blocking the main loop.
See more: langchain_google_bigtable.engine.BigtableEngine._run_as_async
langchain_google_bigtable.engine.BigtableEngine._run_as_sync
_run_as_sync(coro: typing.Any) -> typing.Any
Runs a coroutine on the background loop and waits for the result.
See more: langchain_google_bigtable.engine.BigtableEngine._run_as_sync
langchain_google_bigtable.engine.BigtableEngine.async_initialize
async_initialize(
project_id: typing.Optional[str] = None,
credentials: typing.Optional[google.auth.credentials.Credentials] = None,
client_options: typing.Optional[typing.Any] = None,
**kwargs: typing.Any
) -> langchain_google_bigtable.engine.BigtableEngine
Creates a BigtableEngine instance with a background event loop and a new data client asynchronously .
See more: langchain_google_bigtable.engine.BigtableEngine.async_initialize
langchain_google_bigtable.engine.BigtableEngine.close
close() -> None
Closes the underlying client for this specific engine instance.
See more: langchain_google_bigtable.engine.BigtableEngine.close
langchain_google_bigtable.engine.BigtableEngine.get_async_table
get_async_table(
instance_id: str,
table_id: str,
app_profile_id: typing.Optional[str] = None,
**kwargs: typing.Any
) -> google.cloud.bigtable.data._async.client.TableAsync
Returns the table using this class's client.
See more: langchain_google_bigtable.engine.BigtableEngine.get_async_table
langchain_google_bigtable.engine.BigtableEngine.initialize
initialize(
project_id: typing.Optional[str] = None,
credentials: typing.Optional[google.auth.credentials.Credentials] = None,
client_options: typing.Optional[typing.Any] = None,
**kwargs: typing.Any
) -> langchain_google_bigtable.engine.BigtableEngine
Creates a BigtableEngine instance with a background event loop and a new data client synchronously.
See more: langchain_google_bigtable.engine.BigtableEngine.initialize
langchain_google_bigtable.engine.BigtableEngine.shutdown_default_loop
shutdown_default_loop() -> None
Closes the default class-level shared loop and terminates the thread associated with it.
See more: langchain_google_bigtable.engine.BigtableEngine.shutdown_default_loop
langchain_google_bigtable.key_value_store.BigtableByteStore._get_async_store
_get_async_store(
**kwargs: typing.Any,
) -> langchain_google_bigtable.async_key_value_store.AsyncBigtableByteStore
Returns a AsyncBigtableByteStore object to be used for data operations.
See more: langchain_google_bigtable.key_value_store.BigtableByteStore._get_async_store
langchain_google_bigtable.key_value_store.BigtableByteStore.amdelete
amdelete(keys: typing.Sequence[str]) -> None
Asynchronously deletes key-value pairs from the Bigtable.
See more: langchain_google_bigtable.key_value_store.BigtableByteStore.amdelete
langchain_google_bigtable.key_value_store.BigtableByteStore.amget
amget(keys: typing.Sequence[str]) -> typing.List[typing.Optional[bytes]]
Asynchronously retrieves values for a sequence of keys.
See more: langchain_google_bigtable.key_value_store.BigtableByteStore.amget
langchain_google_bigtable.key_value_store.BigtableByteStore.amset
amset(key_value_pairs: typing.Sequence[typing.Tuple[str, bytes]]) -> None
Asynchronously stores key-value pairs in the Bigtable.
See more: langchain_google_bigtable.key_value_store.BigtableByteStore.amset
langchain_google_bigtable.key_value_store.BigtableByteStore.ayield_keys
ayield_keys(*, prefix: typing.Optional[str] = None) -> typing.AsyncIterator[str]
Asynchronously yields keys matching a given prefix.
See more: langchain_google_bigtable.key_value_store.BigtableByteStore.ayield_keys
langchain_google_bigtable.key_value_store.BigtableByteStore.create
create(
instance_id: str,
table_id: str,
*,
engine: typing.Optional[langchain_google_bigtable.engine.BigtableEngine] = None,
project_id: typing.Optional[str] = None,
app_profile_id: typing.Optional[str] = None,
column_family: str = "kv",
column_qualifier: typing.Union[str, bytes] = b"val",
credentials: typing.Optional[google.auth.credentials.Credentials] = None,
client_options: typing.Optional[typing.Dict[str, typing.Any]] = None,
**kwargs: typing.Any
) -> langchain_google_bigtable.key_value_store.BigtableByteStore
Creates an async-initialized instance of the BigtableByteStore.
See more: langchain_google_bigtable.key_value_store.BigtableByteStore.create
langchain_google_bigtable.key_value_store.BigtableByteStore.create_sync
create_sync(
instance_id: str,
table_id: str,
*,
engine: typing.Optional[langchain_google_bigtable.engine.BigtableEngine] = None,
project_id: typing.Optional[str] = None,
app_profile_id: typing.Optional[str] = None,
column_family: str = "kv",
column_qualifier: typing.Union[str, bytes] = b"val",
credentials: typing.Optional[google.auth.credentials.Credentials] = None,
client_options: typing.Optional[typing.Dict[str, typing.Any]] = None,
**kwargs: typing.Any
) -> langchain_google_bigtable.key_value_store.BigtableByteStore
Creates a sync-initialized instance of the BigtableByteStore.
See more: langchain_google_bigtable.key_value_store.BigtableByteStore.create_sync
langchain_google_bigtable.key_value_store.BigtableByteStore.get_engine
get_engine() -> langchain_google_bigtable.engine.BigtableEngine
Returns the BigtableEngine being used for this object.
See more: langchain_google_bigtable.key_value_store.BigtableByteStore.get_engine
langchain_google_bigtable.key_value_store.BigtableByteStore.mdelete
mdelete(keys: typing.Sequence[str]) -> None
Synchronously deletes key-value pairs from the Bigtable.
See more: langchain_google_bigtable.key_value_store.BigtableByteStore.mdelete
langchain_google_bigtable.key_value_store.BigtableByteStore.mget
mget(keys: typing.Sequence[str]) -> typing.List[typing.Optional[bytes]]
Synchronously retrieves values for a sequence of keys.
See more: langchain_google_bigtable.key_value_store.BigtableByteStore.mget
langchain_google_bigtable.key_value_store.BigtableByteStore.mset
mset(key_value_pairs: typing.Sequence[typing.Tuple[str, bytes]]) -> None
Synchronously stores key-value pairs in the Bigtable.
See more: langchain_google_bigtable.key_value_store.BigtableByteStore.mset
langchain_google_bigtable.key_value_store.BigtableByteStore.yield_keys
yield_keys(*, prefix: typing.Optional[str] = None) -> typing.Iterator[str]
Synchronously yields keys matching a given prefix.
See more: langchain_google_bigtable.key_value_store.BigtableByteStore.yield_keys
langchain_google_bigtable.loader.BigtableLoader
BigtableLoader(
instance_id: str,
table_id: str,
row_set: typing.Optional[google.cloud.bigtable.row_set.RowSet] = None,
filter: typing.Optional[google.cloud.bigtable.row_filters.RowFilter] = None,
client: typing.Optional[google.cloud.bigtable.client.Client] = None,
content_encoding: langchain_google_bigtable.loader.Encoding = Encoding.UTF8,
content_column_family: str = "langchain",
content_column_name: str = "content",
metadata_mappings: typing.List[
langchain_google_bigtable.loader.MetadataMapping
] = [],
metadata_as_json_column_family: typing.Optional[str] = None,
metadata_as_json_column_name: typing.Optional[str] = None,
metadata_as_json_encoding: langchain_google_bigtable.loader.Encoding = Encoding.UTF8,
)
Initialize Bigtable document loader.
langchain_google_bigtable.loader.BigtableLoader.lazy_load
lazy_load() -> typing.Iterator[langchain_core.documents.base.Document]
A lazy loader for Documents.
See more: langchain_google_bigtable.loader.BigtableLoader.lazy_load
langchain_google_bigtable.loader.BigtableLoader.load
load() -> typing.List[langchain_core.documents.base.Document]
Load data into Document objects.
See more: langchain_google_bigtable.loader.BigtableLoader.load
langchain_google_bigtable.loader.BigtableSaver
BigtableSaver(
instance_id: str,
table_id: str,
client: typing.Optional[google.cloud.bigtable.client.Client] = None,
content_encoding: langchain_google_bigtable.loader.Encoding = Encoding.UTF8,
content_column_family: str = "langchain",
content_column_name: str = "content",
metadata_mappings: typing.List[
langchain_google_bigtable.loader.MetadataMapping
] = [],
metadata_as_json_column_family: typing.Optional[str] = None,
metadata_as_json_column_name: typing.Optional[str] = None,
metadata_as_json_encoding: langchain_google_bigtable.loader.Encoding = Encoding.UTF8,
)
Initialize Bigtable document saver.
langchain_google_bigtable.loader.BigtableSaver.add_documents
add_documents(docs: typing.List[langchain_core.documents.base.Document]) -> None
Save documents in the DocumentSaver table.
See more: langchain_google_bigtable.loader.BigtableSaver.add_documents
langchain_google_bigtable.loader.BigtableSaver.delete
delete(docs: typing.List[langchain_core.documents.base.Document]) -> None
Delete all instances of a document from the DocumentSaver table by matching the entire Document object.
See more: langchain_google_bigtable.loader.BigtableSaver.delete
langchain_google_bigtable.vector_store.BigtableVectorStore
BigtableVectorStore(instance_id: str, table_id: str, embedding_service: langchain_core.embeddings.embeddings.Embeddings, collection: str, content_column: langchain_google_bigtable.async_vector_store.ColumnConfig = ColumnConfig(column_qualifier='content', column_family='langchain', encoding=
Initializes the BigtableVectorStore.
See more: langchain_google_bigtable.vector_store.BigtableVectorStore
langchain_google_bigtable.vector_store.BigtableVectorStore._get_async_store
_get_async_store() -> (
langchain_google_bigtable.async_vector_store.AsyncBigtableVectorStore
)
Lazily initializes and returns the underlying async store.
See more: langchain_google_bigtable.vector_store.BigtableVectorStore._get_async_store
langchain_google_bigtable.vector_store.BigtableVectorStore.aadd_documents
aadd_documents(
documents: typing.List[langchain_core.documents.base.Document],
ids: typing.Optional[list] = None,
**kwargs: typing.Any
) -> typing.List[str]
Run more documents through the embeddings and add to the vectorstore.
See more: langchain_google_bigtable.vector_store.BigtableVectorStore.aadd_documents
langchain_google_bigtable.vector_store.BigtableVectorStore.aadd_texts
aadd_texts(
texts: typing.Iterable[str],
metadatas: typing.Optional[typing.List[dict]] = None,
ids: typing.Optional[list] = None,
**kwargs: typing.Any
) -> typing.List[str]
Run more texts through the embeddings and add to the vectorstore.
See more: langchain_google_bigtable.vector_store.BigtableVectorStore.aadd_texts
langchain_google_bigtable.vector_store.BigtableVectorStore.add_documents
add_documents(
documents: typing.List[langchain_core.documents.base.Document],
ids: typing.Optional[list] = None,
**kwargs: typing.Any
) -> typing.List[str]
Run more documents through the embeddings and add to the vectorstore.
See more: langchain_google_bigtable.vector_store.BigtableVectorStore.add_documents
langchain_google_bigtable.vector_store.BigtableVectorStore.add_texts
add_texts(
texts: typing.Iterable[str],
metadatas: typing.Optional[typing.List[typing.Dict]] = None,
ids: typing.Optional[list] = None,
**kwargs: typing.Any
) -> typing.List[str]
Run more texts through the embeddings and add to the vectorstore.
See more: langchain_google_bigtable.vector_store.BigtableVectorStore.add_texts
langchain_google_bigtable.vector_store.BigtableVectorStore.adelete
adelete(
ids: typing.Optional[typing.List[str]] = None, **kwargs: typing.Any
) -> typing.Optional[bool]
Delete by vector ID.
See more: langchain_google_bigtable.vector_store.BigtableVectorStore.adelete
langchain_google_bigtable.vector_store.BigtableVectorStore.afrom_documents
afrom_documents(
documents: typing.List[langchain_core.documents.base.Document],
embedding: langchain_core.embeddings.embeddings.Embeddings,
ids: typing.Optional[list] = None,
**kwargs: typing.Any
) -> langchain_google_bigtable.vector_store.BigtableVectorStore
Return VectorStore initialized from documents and embeddings.
See more: langchain_google_bigtable.vector_store.BigtableVectorStore.afrom_documents
langchain_google_bigtable.vector_store.BigtableVectorStore.afrom_texts
afrom_texts(
texts: typing.List[str],
embedding: langchain_core.embeddings.embeddings.Embeddings,
metadatas: typing.Optional[typing.List[dict]] = None,
ids: typing.Optional[list] = None,
**kwargs: typing.Any
) -> langchain_google_bigtable.vector_store.BigtableVectorStore
Return VectorStore initialized from texts and embeddings.
See more: langchain_google_bigtable.vector_store.BigtableVectorStore.afrom_texts
langchain_google_bigtable.vector_store.BigtableVectorStore.aget_by_ids
aget_by_ids(
ids: typing.Sequence[str],
) -> typing.List[langchain_core.documents.base.Document]
Return documents by their IDs.
See more: langchain_google_bigtable.vector_store.BigtableVectorStore.aget_by_ids
langchain_google_bigtable.vector_store.BigtableVectorStore.amax_marginal_relevance_search
amax_marginal_relevance_search(
query: str,
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
query_parameters: typing.Optional[
langchain_google_bigtable.async_vector_store.QueryParameters
] = None,
**kwargs: typing.Any
) -> typing.List[langchain_core.documents.base.Document]
Return docs selected using the maximal marginal relevance.
See more: langchain_google_bigtable.vector_store.BigtableVectorStore.amax_marginal_relevance_search
langchain_google_bigtable.vector_store.BigtableVectorStore.amax_marginal_relevance_search_by_vector
amax_marginal_relevance_search_by_vector(
embedding: typing.List[float],
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
query_parameters: typing.Optional[
langchain_google_bigtable.async_vector_store.QueryParameters
] = None,
**kwargs: typing.Any
) -> typing.List[langchain_core.documents.base.Document]
Return docs selected using the maximal marginal relevance.
See more: langchain_google_bigtable.vector_store.BigtableVectorStore.amax_marginal_relevance_search_by_vector
langchain_google_bigtable.vector_store.BigtableVectorStore.as_retriever
as_retriever(
**kwargs: typing.Any,
) -> langchain_core.vectorstores.base.VectorStoreRetriever
Return VectorStoreRetriever initialized from this VectorStore.
See more: langchain_google_bigtable.vector_store.BigtableVectorStore.as_retriever
langchain_google_bigtable.vector_store.BigtableVectorStore.asimilarity_search
asimilarity_search(
query: str,
k: int = 4,
query_parameters: typing.Optional[
langchain_google_bigtable.async_vector_store.QueryParameters
] = None,
**kwargs: typing.Any
) -> typing.List[langchain_core.documents.base.Document]
Return docs most similar to query.
See more: langchain_google_bigtable.vector_store.BigtableVectorStore.asimilarity_search
langchain_google_bigtable.vector_store.BigtableVectorStore.asimilarity_search_by_vector
asimilarity_search_by_vector(
embedding: typing.List[float],
k: int = 4,
query_parameters: typing.Optional[
langchain_google_bigtable.async_vector_store.QueryParameters
] = None,
**kwargs: typing.Any
) -> typing.List[langchain_core.documents.base.Document]
Return docs most similar to embedding vector.
See more: langchain_google_bigtable.vector_store.BigtableVectorStore.asimilarity_search_by_vector
langchain_google_bigtable.vector_store.BigtableVectorStore.asimilarity_search_with_relevance_scores
asimilarity_search_with_relevance_scores(
query: str,
k: int = 4,
query_parameters: typing.Optional[
langchain_google_bigtable.async_vector_store.QueryParameters
] = None,
**kwargs: typing.Any
) -> typing.List[typing.Tuple[langchain_core.documents.base.Document, float]]
Return docs and relevance scores in the range [0, 1].
See more: langchain_google_bigtable.vector_store.BigtableVectorStore.asimilarity_search_with_relevance_scores
langchain_google_bigtable.vector_store.BigtableVectorStore.asimilarity_search_with_score
asimilarity_search_with_score(
query: str,
k: int = 4,
query_parameters: typing.Optional[
langchain_google_bigtable.async_vector_store.QueryParameters
] = None,
**kwargs: typing.Any
) -> typing.List[typing.Tuple[langchain_core.documents.base.Document, float]]
Run similarity search with distance.
See more: langchain_google_bigtable.vector_store.BigtableVectorStore.asimilarity_search_with_score
langchain_google_bigtable.vector_store.BigtableVectorStore.asimilarity_search_with_score_by_vector
asimilarity_search_with_score_by_vector(
embedding: typing.List[float],
k: int = 4,
query_parameters: typing.Optional[
langchain_google_bigtable.async_vector_store.QueryParameters
] = None,
**kwargs: typing.Any
) -> typing.List[typing.Tuple[langchain_core.documents.base.Document, float]]
Run similarity search with distance by vector.
See more: langchain_google_bigtable.vector_store.BigtableVectorStore.asimilarity_search_with_score_by_vector
langchain_google_bigtable.vector_store.BigtableVectorStore.close
close() -> None
Close the engine connection.
See more: langchain_google_bigtable.vector_store.BigtableVectorStore.close
langchain_google_bigtable.vector_store.BigtableVectorStore.create
create(instance_id: str, table_id: str, embedding_service: langchain_core.embeddings.embeddings.Embeddings, collection: str, engine: typing.Optional[langchain_google_bigtable.engine.BigtableEngine] = None, content_column: langchain_google_bigtable.async_vector_store.ColumnConfig = ColumnConfig(column_qualifier='content', column_family='langchain', encoding=
Asynchronously initializes the engine and creates an instance of the vector store.
See more: langchain_google_bigtable.vector_store.BigtableVectorStore.create
langchain_google_bigtable.vector_store.BigtableVectorStore.create_sync
create_sync(instance_id: str, table_id: str, embedding_service: langchain_core.embeddings.embeddings.Embeddings, collection: str, engine: typing.Optional[langchain_google_bigtable.engine.BigtableEngine] = None, content_column: langchain_google_bigtable.async_vector_store.ColumnConfig = ColumnConfig(column_qualifier='content', column_family='langchain', encoding=
Synchronously initializes the engine and creates an instance of the vector store.
See more: langchain_google_bigtable.vector_store.BigtableVectorStore.create_sync
langchain_google_bigtable.vector_store.BigtableVectorStore.delete
delete(
ids: typing.Optional[typing.List[str]] = None, **kwargs: typing.Any
) -> typing.Optional[bool]
Delete by vector ID.
See more: langchain_google_bigtable.vector_store.BigtableVectorStore.delete
langchain_google_bigtable.vector_store.BigtableVectorStore.from_documents
from_documents(
documents: typing.List[langchain_core.documents.base.Document],
embedding: langchain_core.embeddings.embeddings.Embeddings,
ids: typing.Optional[list] = None,
**kwargs: typing.Any
) -> langchain_google_bigtable.vector_store.BigtableVectorStore
Return VectorStore initialized from documents and embeddings.
See more: langchain_google_bigtable.vector_store.BigtableVectorStore.from_documents
langchain_google_bigtable.vector_store.BigtableVectorStore.from_texts
from_texts(
texts: typing.List[str],
embedding: langchain_core.embeddings.embeddings.Embeddings,
metadatas: typing.Optional[typing.List[dict]] = None,
ids: typing.Optional[list] = None,
**kwargs: typing.Any
) -> langchain_google_bigtable.vector_store.BigtableVectorStore
Return VectorStore initialized from texts and embeddings.
See more: langchain_google_bigtable.vector_store.BigtableVectorStore.from_texts
langchain_google_bigtable.vector_store.BigtableVectorStore.get_by_ids
get_by_ids(
ids: typing.Sequence[str],
) -> typing.List[langchain_core.documents.base.Document]
Return documents by their IDs.
See more: langchain_google_bigtable.vector_store.BigtableVectorStore.get_by_ids
langchain_google_bigtable.vector_store.BigtableVectorStore.get_engine
get_engine() -> typing.Optional[langchain_google_bigtable.engine.BigtableEngine]
Get the BigtableEngine instance.
See more: langchain_google_bigtable.vector_store.BigtableVectorStore.get_engine
langchain_google_bigtable.vector_store.BigtableVectorStore.max_marginal_relevance_search
max_marginal_relevance_search(
query: str,
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
query_parameters: typing.Optional[
langchain_google_bigtable.async_vector_store.QueryParameters
] = None,
**kwargs: typing.Any
) -> typing.List[langchain_core.documents.base.Document]
Return docs selected using the maximal marginal relevance.
See more: langchain_google_bigtable.vector_store.BigtableVectorStore.max_marginal_relevance_search
langchain_google_bigtable.vector_store.BigtableVectorStore.max_marginal_relevance_search_by_vector
max_marginal_relevance_search_by_vector(
embedding: typing.List[float],
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
query_parameters: typing.Optional[
langchain_google_bigtable.async_vector_store.QueryParameters
] = None,
**kwargs: typing.Any
) -> typing.List[langchain_core.documents.base.Document]
Return docs selected using the maximal marginal relevance.
See more: langchain_google_bigtable.vector_store.BigtableVectorStore.max_marginal_relevance_search_by_vector
langchain_google_bigtable.vector_store.BigtableVectorStore.similarity_search
similarity_search(
query: str,
k: int = 4,
query_parameters: typing.Optional[
langchain_google_bigtable.async_vector_store.QueryParameters
] = None,
**kwargs: typing.Any
) -> typing.List[langchain_core.documents.base.Document]
Return docs most similar to query.
See more: langchain_google_bigtable.vector_store.BigtableVectorStore.similarity_search
langchain_google_bigtable.vector_store.BigtableVectorStore.similarity_search_by_vector
similarity_search_by_vector(
embedding: typing.List[float],
k: int = 4,
query_parameters: typing.Optional[
langchain_google_bigtable.async_vector_store.QueryParameters
] = None,
**kwargs: typing.Any
) -> typing.List[langchain_core.documents.base.Document]
Return docs most similar to embedding vector.
See more: langchain_google_bigtable.vector_store.BigtableVectorStore.similarity_search_by_vector
langchain_google_bigtable.vector_store.BigtableVectorStore.similarity_search_with_relevance_scores
similarity_search_with_relevance_scores(
query: str,
k: int = 4,
query_parameters: typing.Optional[
langchain_google_bigtable.async_vector_store.QueryParameters
] = None,
**kwargs: typing.Any
) -> typing.List[typing.Tuple[langchain_core.documents.base.Document, float]]
Return docs and relevance scores in the range [0, 1].
See more: langchain_google_bigtable.vector_store.BigtableVectorStore.similarity_search_with_relevance_scores
langchain_google_bigtable.vector_store.BigtableVectorStore.similarity_search_with_score
similarity_search_with_score(
query: str,
k: int = 4,
query_parameters: typing.Optional[
langchain_google_bigtable.async_vector_store.QueryParameters
] = None,
**kwargs: typing.Any
) -> typing.List[typing.Tuple[langchain_core.documents.base.Document, float]]
Run similarity search with distance.
See more: langchain_google_bigtable.vector_store.BigtableVectorStore.similarity_search_with_score
langchain_google_bigtable.vector_store.BigtableVectorStore.similarity_search_with_score_by_vector
similarity_search_with_score_by_vector(
embedding: typing.List[float],
k: int = 4,
query_parameters: typing.Optional[
langchain_google_bigtable.async_vector_store.QueryParameters
] = None,
**kwargs: typing.Any
) -> typing.List[typing.Tuple[langchain_core.documents.base.Document, float]]
Run similarity search with distance by vector.
See more: langchain_google_bigtable.vector_store.BigtableVectorStore.similarity_search_with_score_by_vector