[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2025-08-28 UTC."],[],[],null,["# Module vector_store (0.9.0)\n\nVersion latestkeyboard_arrow_down\n\n- [0.9.0 (latest)](/python/docs/reference/langchain-google-spanner/latest/langchain_google_spanner.vector_store)\n- [0.8.2](/python/docs/reference/langchain-google-spanner/0.8.2/langchain_google_spanner.vector_store)\n- [0.7.0](/python/docs/reference/langchain-google-spanner/0.7.0/langchain_google_spanner.vector_store)\n- [0.6.0](/python/docs/reference/langchain-google-spanner/0.6.0/langchain_google_spanner.vector_store)\n- [0.5.0](/python/docs/reference/langchain-google-spanner/0.5.0/langchain_google_spanner.vector_store)\n- [0.4.1](/python/docs/reference/langchain-google-spanner/0.4.1/langchain_google_spanner.vector_store)\n- [0.3.0](/python/docs/reference/langchain-google-spanner/0.3.0/langchain_google_spanner.vector_store) \nAPI documentation for `vector_store` module.\n\nClasses\n-------\n\n### [DialectSemantics](/python/docs/reference/langchain-google-spanner/latest/langchain_google_spanner.vector_store.DialectSemantics)\n\n DialectSemantics()\n\nAbstract base class for dialect semantics.\n\n### [DistanceStrategy](/python/docs/reference/langchain-google-spanner/latest/langchain_google_spanner.vector_store.DistanceStrategy)\n\n DistanceStrategy(value)\n\nEnum for distance calculation strategies.\n\n### [GoogleSqlSemantics](/python/docs/reference/langchain-google-spanner/latest/langchain_google_spanner.vector_store.GoogleSqlSemantics)\n\n GoogleSqlSemantics()\n\nImplementation of dialect semantics for Google SQL.\n\n### [PGSqlSemantics](/python/docs/reference/langchain-google-spanner/latest/langchain_google_spanner.vector_store.PGSqlSemantics)\n\n PGSqlSemantics()\n\nImplementation of dialect semantics for PostgreSQL.\n\n### [QueryParameters](/python/docs/reference/langchain-google-spanner/latest/langchain_google_spanner.vector_store.QueryParameters)\n\n QueryParameters(\n algorithm=NearestNeighborsAlgorithm.EXACT_NEAREST_NEIGHBOR,\n distance_strategy=DistanceStrategy.EUCLIDEAN,\n read_timestamp: typing.Optional[datetime.datetime] = None,\n min_read_timestamp: typing.Optional[datetime.datetime] = None,\n max_staleness: typing.Optional[datetime.timedelta] = None,\n exact_staleness: typing.Optional[datetime.timedelta] = None,\n )\n\nClass representing query parameters for nearest neighbors search.\n\n### [SpannerVectorStore](/python/docs/reference/langchain-google-spanner/latest/langchain_google_spanner.vector_store.SpannerVectorStore)\n\n SpannerVectorStore(instance_id: str, database_id: str, table_name: str, embedding_service: langchain_core.embeddings.embeddings.Embeddings, id_column: str = 'langchain_id', content_column: str = 'content', embedding_column: typing.Optional[typing.Union[str, langchain_google_spanner.vector_store.TableColumn]] = None, client: typing.Optional[google.cloud.spanner_v1.client.Client] = None, metadata_columns: typing.Optional[typing.List[str]] = None, ignore_metadata_columns: typing.Optional[typing.List[str]] = None, metadata_json_column: typing.Optional[str] = None, vector_index_name: typing.Optional[str] = None, query_parameters: langchain_google_spanner.vector_store.QueryParameters = \u003clangchain_google_spanner.vector_store.QueryParameters object\u003e)\n\nInitialize the SpannerVectorStore.\n\nParameters:\n\n- instance_id (str): The ID of the Spanner instance.\n- database_id (str): The ID of the Spanner database.\n- table_name (str): The name of the table.\n- embedding_service (Embeddings): The embedding service.\n- id_column (str): The name of the row ID column. Defaults to ID_COLUMN_NAME.\n- content_column (str): The name of the content column. Defaults to CONTENT_COLUMN_NAME.\n- embedding_column (str): The name of the embedding column. Defaults to EMBEDDING_COLUMN_NAME.\n- client (Client): The Spanner client. Defaults to Client().\n- metadata_columns (Optional\\[List\\[str\\]\\]): List of metadata columns. Defaults to None.\n- ignore_metadata_columns (Optional\\[List\\[str\\]\\]): List of metadata columns to ignore. Defaults to None.\n- metadata_json_column (Optional\\[str\\]): The generic metadata column. Defaults to None.\n- query_parameters (QueryParameters): The query parameters. Defaults to QueryParameters().\n\n### [TableColumn](/python/docs/reference/langchain-google-spanner/latest/langchain_google_spanner.vector_store.TableColumn)\n\n TableColumn(\n name: str,\n type: str,\n is_null: bool = True,\n vector_length: typing.Optional[int] = None,\n )\n\nRepresents column configuration, to be used as part of create DDL statement for table creation.\n\n### [VectorSearchIndex](/python/docs/reference/langchain-google-spanner/latest/langchain_google_spanner.vector_store.VectorSearchIndex)\n\n VectorSearchIndex(\n num_leaves: int,\n num_branches: int,\n tree_depth: int,\n distance_type: langchain_google_spanner.vector_store.DistanceStrategy,\n nullable_column: bool = False,\n *args,\n **kwargs\n )\n\nThe index for use with Approximate Nearest Neighbor (ANN) vector search."]]