- 1.122.0 (latest)
- 1.121.0
- 1.120.0
- 1.119.0
- 1.118.0
- 1.117.0
- 1.95.1
- 1.94.0
- 1.93.1
- 1.92.0
- 1.91.0
- 1.90.0
- 1.89.0
- 1.88.0
- 1.87.0
- 1.86.0
- 1.85.0
- 1.84.0
- 1.83.0
- 1.82.0
- 1.81.0
- 1.80.0
- 1.79.0
- 1.78.0
- 1.77.0
- 1.76.0
- 1.75.0
- 1.74.0
- 1.73.0
- 1.72.0
- 1.71.1
- 1.70.0
- 1.69.0
- 1.68.0
- 1.67.1
- 1.66.0
- 1.65.0
- 1.63.0
- 1.62.0
- 1.60.0
- 1.59.0
ImageSegmentationModel(model_id: str, endpoint_name: typing.Optional[str] = None)Segments an image.
Methods
ImageSegmentationModel
ImageSegmentationModel(model_id: str, endpoint_name: typing.Optional[str] = None)Creates a _ModelGardenModel.
This constructor should not be called directly.
Use {model_class}.from_pretrained(model_name=...) instead.
from_pretrained
from_pretrained(model_name: str) -> vertexai._model_garden._model_garden_models.TLoads a _ModelGardenModel.
| Exceptions | |
|---|---|
| Type | Description |
ValueError |
If model_name is unknown. |
ValueError |
If model does not support this class. |
segment_image
segment_image(
base_image: vertexai.vision_models.Image,
prompt: typing.Optional[str] = None,
scribble: typing.Optional[vertexai.preview.vision_models.Scribble] = None,
mode: typing.Literal[
"foreground", "background", "semantic", "prompt", "interactive"
] = "foreground",
max_predictions: typing.Optional[int] = None,
confidence_threshold: typing.Optional[float] = 0.1,
mask_dilation: typing.Optional[float] = None,
binary_color_threshold: typing.Optional[float] = None,
) -> vertexai.preview.vision_models.ImageSegmentationResponseSegments an image.