- 1.30.1 (latest)
 - 1.30.0
 - 1.29.0
 - 1.28.0
 - 1.27.0
 - 1.26.0
 - 1.25.0
 - 1.24.0
 - 1.23.1
 - 1.22.0
 - 1.21.0
 - 1.20.0
 - 1.19.0
 - 1.18.0
 - 1.17.0
 - 1.16.0
 - 1.15.0
 - 1.14.0
 - 1.13.0
 - 1.12.0
 - 1.11.0
 - 1.10.0
 - 1.9.0
 - 1.8.0
 - 1.7.0
 - 1.6.0
 - 1.5.0
 - 1.4.0
 - 1.3.0
 - 1.2.0
 - 1.1.0
 - 1.0.0
 - 0.64.0
 - 0.63.0
 - 0.62.0
 - 0.61.0
 - 0.60.0
 - 0.59.0
 - 0.58.0
 - 0.57.0
 - 0.56.0
 - 0.55.0
 - 0.54.0
 - 0.53.0
 - 0.52.0
 - 0.51.0
 - 0.50.0
 - 0.49.0
 - 0.48.0
 - 0.47.0
 - 0.46.0
 - 0.45.0
 - 0.44.0
 - 0.43.0
 - 0.42.0
 - 0.41.0
 - 0.40.0
 - 0.39.0
 - 0.38.0
 - 0.37.0
 - 0.36.0
 - 0.35.0
 - 0.34.0
 - 0.33.0
 - 0.32.0
 - 0.31.0
 - 0.30.0
 - 0.29.0
 - 0.28.0
 - 0.27.0
 - 0.26.0
 - 0.25.0
 - 0.24.0
 - 0.23.0
 - 0.22.0
 - 0.21.0
 - 0.20.0
 - 0.19.0
 - 0.18.0
 - 0.17.0
 - 0.16.0
 - 0.15.0
 - 0.14.0
 - 0.13.0
 - 0.12.0
 - 0.11.0
 - 0.10.0
 - 0.9.1
 - 0.8.0
 - 0.7.0
 - 0.6.0
 - 0.5.0
 - 0.4.0
 - 0.3.0
 - 0.2.0
 - 0.1.0
 
Reference documentation and code samples for the Vertex AI V1 API class Google::Cloud::AIPlatform::V1::GenerationConfig.
Generation config.
Inherits
- Object
 
Extended By
- Google::Protobuf::MessageExts::ClassMethods
 
Includes
- Google::Protobuf::MessageExts
 
Methods
#candidate_count
def candidate_count() -> ::Integer
    Returns
    
  - (::Integer) — Optional. Number of candidates to generate.
 
#candidate_count=
def candidate_count=(value) -> ::Integer
    Parameter
    
  - value (::Integer) — Optional. Number of candidates to generate.
 
    Returns
    
  - (::Integer) — Optional. Number of candidates to generate.
 
#frequency_penalty
def frequency_penalty() -> ::Float
    Returns
    
  - (::Float) — Optional. Frequency penalties.
 
#frequency_penalty=
def frequency_penalty=(value) -> ::Float
    Parameter
    
  - value (::Float) — Optional. Frequency penalties.
 
    Returns
    
  - (::Float) — Optional. Frequency penalties.
 
#logprobs
def logprobs() -> ::Integer
    Returns
    
  - (::Integer) — Optional. Logit probabilities.
 
#logprobs=
def logprobs=(value) -> ::Integer
    Parameter
    
  - value (::Integer) — Optional. Logit probabilities.
 
    Returns
    
  - (::Integer) — Optional. Logit probabilities.
 
#max_output_tokens
def max_output_tokens() -> ::Integer
    Returns
    
  - (::Integer) — Optional. The maximum number of output tokens to generate per message.
 
#max_output_tokens=
def max_output_tokens=(value) -> ::Integer
    Parameter
    
  - value (::Integer) — Optional. The maximum number of output tokens to generate per message.
 
    Returns
    
  - (::Integer) — Optional. The maximum number of output tokens to generate per message.
 
#presence_penalty
def presence_penalty() -> ::Float
    Returns
    
  - (::Float) — Optional. Positive penalties.
 
#presence_penalty=
def presence_penalty=(value) -> ::Float
    Parameter
    
  - value (::Float) — Optional. Positive penalties.
 
    Returns
    
  - (::Float) — Optional. Positive penalties.
 
#response_logprobs
def response_logprobs() -> ::Boolean
    Returns
    
  - (::Boolean) — Optional. If true, export the logprobs results in response.
 
#response_logprobs=
def response_logprobs=(value) -> ::Boolean
    Parameter
    
  - value (::Boolean) — Optional. If true, export the logprobs results in response.
 
    Returns
    
  - (::Boolean) — Optional. If true, export the logprobs results in response.
 
#response_mime_type
def response_mime_type() -> ::String
    Returns
    
  - 
        (::String) — 
Optional. Output response mimetype of the generated candidate text. Supported mimetype:
text/plain: (default) Text output.application/json: JSON response in the candidates. The model needs to be prompted to output the appropriate response type, otherwise the behavior is undefined. This is a preview feature.
 
#response_mime_type=
def response_mime_type=(value) -> ::String
    Parameter
    
  - 
        value (::String) — 
Optional. Output response mimetype of the generated candidate text. Supported mimetype:
text/plain: (default) Text output.application/json: JSON response in the candidates. The model needs to be prompted to output the appropriate response type, otherwise the behavior is undefined. This is a preview feature.
 
    Returns
    
  - 
        (::String) — 
Optional. Output response mimetype of the generated candidate text. Supported mimetype:
text/plain: (default) Text output.application/json: JSON response in the candidates. The model needs to be prompted to output the appropriate response type, otherwise the behavior is undefined. This is a preview feature.
 
#response_schema
def response_schema() -> ::Google::Cloud::AIPlatform::V1::Schema
    Returns
    
  - 
        (::Google::Cloud::AIPlatform::V1::Schema) — Optional. The 
Schemaobject allows the definition of input and output data types. These types can be objects, but also primitives and arrays. Represents a select subset of an OpenAPI 3.0 schema object. If set, a compatible response_mime_type must also be set. Compatible mimetypes:application/json: Schema for JSON response. 
#response_schema=
def response_schema=(value) -> ::Google::Cloud::AIPlatform::V1::Schema
    Parameter
    
  - 
        value (::Google::Cloud::AIPlatform::V1::Schema) — Optional. The 
Schemaobject allows the definition of input and output data types. These types can be objects, but also primitives and arrays. Represents a select subset of an OpenAPI 3.0 schema object. If set, a compatible response_mime_type must also be set. Compatible mimetypes:application/json: Schema for JSON response. 
    Returns
    
  - 
        (::Google::Cloud::AIPlatform::V1::Schema) — Optional. The 
Schemaobject allows the definition of input and output data types. These types can be objects, but also primitives and arrays. Represents a select subset of an OpenAPI 3.0 schema object. If set, a compatible response_mime_type must also be set. Compatible mimetypes:application/json: Schema for JSON response. 
#routing_config
def routing_config() -> ::Google::Cloud::AIPlatform::V1::GenerationConfig::RoutingConfig
    Returns
    
  - (::Google::Cloud::AIPlatform::V1::GenerationConfig::RoutingConfig) — Optional. Routing configuration.
 
#routing_config=
def routing_config=(value) -> ::Google::Cloud::AIPlatform::V1::GenerationConfig::RoutingConfig
    Parameter
    
  - value (::Google::Cloud::AIPlatform::V1::GenerationConfig::RoutingConfig) — Optional. Routing configuration.
 
    Returns
    
  - (::Google::Cloud::AIPlatform::V1::GenerationConfig::RoutingConfig) — Optional. Routing configuration.
 
#seed
def seed() -> ::Integer
    Returns
    
  - (::Integer) — Optional. Seed.
 
#seed=
def seed=(value) -> ::Integer
    Parameter
    
  - value (::Integer) — Optional. Seed.
 
    Returns
    
  - (::Integer) — Optional. Seed.
 
#stop_sequences
def stop_sequences() -> ::Array<::String>
    Returns
    
  - (::Array<::String>) — Optional. Stop sequences.
 
#stop_sequences=
def stop_sequences=(value) -> ::Array<::String>
    Parameter
    
  - value (::Array<::String>) — Optional. Stop sequences.
 
    Returns
    
  - (::Array<::String>) — Optional. Stop sequences.
 
#temperature
def temperature() -> ::Float
    Returns
    
  - (::Float) — Optional. Controls the randomness of predictions.
 
#temperature=
def temperature=(value) -> ::Float
    Parameter
    
  - value (::Float) — Optional. Controls the randomness of predictions.
 
    Returns
    
  - (::Float) — Optional. Controls the randomness of predictions.
 
#top_k
def top_k() -> ::Float
    Returns
    
  - (::Float) — Optional. If specified, top-k sampling will be used.
 
#top_k=
def top_k=(value) -> ::Float
    Parameter
    
  - value (::Float) — Optional. If specified, top-k sampling will be used.
 
    Returns
    
  - (::Float) — Optional. If specified, top-k sampling will be used.
 
#top_p
def top_p() -> ::Float
    Returns
    
  - (::Float) — Optional. If specified, nucleus sampling will be used.
 
#top_p=
def top_p=(value) -> ::Float
    Parameter
    
  - value (::Float) — Optional. If specified, nucleus sampling will be used.
 
    Returns
    
- (::Float) — Optional. If specified, nucleus sampling will be used.