Vertex AI V1 API - Class Google::Cloud::AIPlatform::V1::TuningJob (v1.30.0)

Reference documentation and code samples for the Vertex AI V1 API class Google::Cloud::AIPlatform::V1::TuningJob.

Represents a TuningJob that runs with Google owned models.

Inherits

  • Object

Extended By

  • Google::Protobuf::MessageExts::ClassMethods

Includes

  • Google::Protobuf::MessageExts

Methods

#base_model

def base_model() -> ::String
Returns
  • (::String) — The base model that is being tuned. See Supported models.

    Note: The following fields are mutually exclusive: base_model, pre_tuned_model. If a field in that set is populated, all other fields in the set will automatically be cleared.

#base_model=

def base_model=(value) -> ::String
Parameter
  • value (::String) — The base model that is being tuned. See Supported models.

    Note: The following fields are mutually exclusive: base_model, pre_tuned_model. If a field in that set is populated, all other fields in the set will automatically be cleared.

Returns
  • (::String) — The base model that is being tuned. See Supported models.

    Note: The following fields are mutually exclusive: base_model, pre_tuned_model. If a field in that set is populated, all other fields in the set will automatically be cleared.

#create_time

def create_time() -> ::Google::Protobuf::Timestamp
Returns

#description

def description() -> ::String
Returns
  • (::String) — Optional. The description of the TuningJob.

#description=

def description=(value) -> ::String
Parameter
  • value (::String) — Optional. The description of the TuningJob.
Returns
  • (::String) — Optional. The description of the TuningJob.

#encryption_spec

def encryption_spec() -> ::Google::Cloud::AIPlatform::V1::EncryptionSpec
Returns

#encryption_spec=

def encryption_spec=(value) -> ::Google::Cloud::AIPlatform::V1::EncryptionSpec
Parameter
Returns

#end_time

def end_time() -> ::Google::Protobuf::Timestamp
Returns
  • (::Google::Protobuf::Timestamp) — Output only. Time when the TuningJob entered any of the following JobStates: JOB_STATE_SUCCEEDED, JOB_STATE_FAILED, JOB_STATE_CANCELLED, JOB_STATE_EXPIRED.

#error

def error() -> ::Google::Rpc::Status
Returns
  • (::Google::Rpc::Status) — Output only. Only populated when job's state is JOB_STATE_FAILED or JOB_STATE_CANCELLED.

#experiment

def experiment() -> ::String
Returns
  • (::String) — Output only. The Experiment associated with this TuningJob.

#labels

def labels() -> ::Google::Protobuf::Map{::String => ::String}
Returns
  • (::Google::Protobuf::Map{::String => ::String}) — Optional. The labels with user-defined metadata to organize TuningJob and generated resources such as Model and Endpoint.

    Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed.

    See https://goo.gl/xmQnxf for more information and examples of labels.

#labels=

def labels=(value) -> ::Google::Protobuf::Map{::String => ::String}
Parameter
  • value (::Google::Protobuf::Map{::String => ::String}) — Optional. The labels with user-defined metadata to organize TuningJob and generated resources such as Model and Endpoint.

    Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed.

    See https://goo.gl/xmQnxf for more information and examples of labels.

Returns
  • (::Google::Protobuf::Map{::String => ::String}) — Optional. The labels with user-defined metadata to organize TuningJob and generated resources such as Model and Endpoint.

    Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed.

    See https://goo.gl/xmQnxf for more information and examples of labels.

#name

def name() -> ::String
Returns
  • (::String) — Output only. Identifier. Resource name of a TuningJob. Format: projects/{project}/locations/{location}/tuningJobs/{tuning_job}

#pre_tuned_model

def pre_tuned_model() -> ::Google::Cloud::AIPlatform::V1::PreTunedModel
Returns
  • (::Google::Cloud::AIPlatform::V1::PreTunedModel) — The pre-tuned model for continuous tuning.

    Note: The following fields are mutually exclusive: pre_tuned_model, base_model. If a field in that set is populated, all other fields in the set will automatically be cleared.

#pre_tuned_model=

def pre_tuned_model=(value) -> ::Google::Cloud::AIPlatform::V1::PreTunedModel
Parameter
  • value (::Google::Cloud::AIPlatform::V1::PreTunedModel) — The pre-tuned model for continuous tuning.

    Note: The following fields are mutually exclusive: pre_tuned_model, base_model. If a field in that set is populated, all other fields in the set will automatically be cleared.

Returns
  • (::Google::Cloud::AIPlatform::V1::PreTunedModel) — The pre-tuned model for continuous tuning.

    Note: The following fields are mutually exclusive: pre_tuned_model, base_model. If a field in that set is populated, all other fields in the set will automatically be cleared.

#service_account

def service_account() -> ::String
Returns
  • (::String) — The service account that the tuningJob workload runs as. If not specified, the Vertex AI Secure Fine-Tuned Service Agent in the project will be used. See https://cloud.google.com/iam/docs/service-agents#vertex-ai-secure-fine-tuning-service-agent

    Users starting the pipeline must have the iam.serviceAccounts.actAs permission on this service account.

#service_account=

def service_account=(value) -> ::String
Parameter
  • value (::String) — The service account that the tuningJob workload runs as. If not specified, the Vertex AI Secure Fine-Tuned Service Agent in the project will be used. See https://cloud.google.com/iam/docs/service-agents#vertex-ai-secure-fine-tuning-service-agent

    Users starting the pipeline must have the iam.serviceAccounts.actAs permission on this service account.

Returns
  • (::String) — The service account that the tuningJob workload runs as. If not specified, the Vertex AI Secure Fine-Tuned Service Agent in the project will be used. See https://cloud.google.com/iam/docs/service-agents#vertex-ai-secure-fine-tuning-service-agent

    Users starting the pipeline must have the iam.serviceAccounts.actAs permission on this service account.

#start_time

def start_time() -> ::Google::Protobuf::Timestamp
Returns

#state

def state() -> ::Google::Cloud::AIPlatform::V1::JobState
Returns

#supervised_tuning_spec

def supervised_tuning_spec() -> ::Google::Cloud::AIPlatform::V1::SupervisedTuningSpec
Returns

#supervised_tuning_spec=

def supervised_tuning_spec=(value) -> ::Google::Cloud::AIPlatform::V1::SupervisedTuningSpec
Parameter
Returns

#tuned_model

def tuned_model() -> ::Google::Cloud::AIPlatform::V1::TunedModel
Returns

#tuned_model_display_name

def tuned_model_display_name() -> ::String
Returns
  • (::String) — Optional. The display name of the TunedModel. The name can be up to 128 characters long and can consist of any UTF-8 characters. For continuous tuning, tuned_model_display_name will by default use the same display name as the pre-tuned model. If a new display name is provided, the tuning job will create a new model instead of a new version.

#tuned_model_display_name=

def tuned_model_display_name=(value) -> ::String
Parameter
  • value (::String) — Optional. The display name of the TunedModel. The name can be up to 128 characters long and can consist of any UTF-8 characters. For continuous tuning, tuned_model_display_name will by default use the same display name as the pre-tuned model. If a new display name is provided, the tuning job will create a new model instead of a new version.
Returns
  • (::String) — Optional. The display name of the TunedModel. The name can be up to 128 characters long and can consist of any UTF-8 characters. For continuous tuning, tuned_model_display_name will by default use the same display name as the pre-tuned model. If a new display name is provided, the tuning job will create a new model instead of a new version.

#tuning_data_stats

def tuning_data_stats() -> ::Google::Cloud::AIPlatform::V1::TuningDataStats
Returns

#update_time

def update_time() -> ::Google::Protobuf::Timestamp
Returns