Einige oder alle Informationen auf dieser Seite gelten möglicherweise nicht für Trusted Cloud von S3NS.
Klassifizierung – Übersicht
Ein gängiger Anwendungsfall für maschinelles Lernen ist die Klassifizierung neuer Daten mithilfe eines Modells, das mit ähnlichen beschrifteten Daten trainiert wurde. Sie können beispielsweise vorhersagen, ob es sich bei einer E-Mail um Spam handelt oder ob eine Kundenrezension positiv, negativ oder neutral ist.
Sie können eines der folgenden Modelle in Kombination mit der Funktion ML.PREDICT
verwenden, um eine Klassifizierung durchzuführen:
Empfohlene Kenntnisse
Mit den Standardeinstellungen in den CREATE MODEL
-Anweisungen und der ML.PREDICT
-Funktion können Sie auch ohne viel ML-Kenntnisse ein Klassifizierungsmodell erstellen und verwenden. Grundlegende Kenntnisse zur ML-Entwicklung helfen Ihnen jedoch, sowohl Ihre Daten als auch Ihr Modell zu optimieren, um bessere Ergebnisse zu erzielen. Wir empfehlen die folgenden Ressourcen, um sich mit ML-Techniken und -Prozessen vertraut zu machen:
Sofern nicht anders angegeben, sind die Inhalte dieser Seite unter der Creative Commons Attribution 4.0 License und Codebeispiele unter der Apache 2.0 License lizenziert. Weitere Informationen finden Sie in den Websiterichtlinien von Google Developers. Java ist eine eingetragene Marke von Oracle und/oder seinen Partnern.
Zuletzt aktualisiert: 2025-08-17 (UTC).
[[["Leicht verständlich","easyToUnderstand","thumb-up"],["Mein Problem wurde gelöst","solvedMyProblem","thumb-up"],["Sonstiges","otherUp","thumb-up"]],[["Benötigte Informationen nicht gefunden","missingTheInformationINeed","thumb-down"],["Zu umständlich/zu viele Schritte","tooComplicatedTooManySteps","thumb-down"],["Nicht mehr aktuell","outOfDate","thumb-down"],["Problem mit der Übersetzung","translationIssue","thumb-down"],["Problem mit Beispielen/Code","samplesCodeIssue","thumb-down"],["Sonstiges","otherDown","thumb-down"]],["Zuletzt aktualisiert: 2025-08-17 (UTC)."],[[["\u003cp\u003eMachine learning classification involves using a model trained on labeled data to classify new data, such as identifying spam emails or categorizing customer reviews.\u003c/p\u003e\n"],["\u003cp\u003eThe \u003ccode\u003eML.PREDICT\u003c/code\u003e function can be used with various classification models, including logistic regression, boosted tree, random forest, deep neural network (DNN), wide & deep, and AutoML models.\u003c/p\u003e\n"],["\u003cp\u003eDifferent models can be specified using the \u003ccode\u003eMODEL_TYPE\u003c/code\u003e option, such as \u003ccode\u003eLOGISTIC_REG\u003c/code\u003e, \u003ccode\u003eBOOSTED_TREE_CLASSIFIER\u003c/code\u003e, \u003ccode\u003eRANDOM_FOREST_CLASSIFIER\u003c/code\u003e, \u003ccode\u003eDNN_CLASSIFIER\u003c/code\u003e, \u003ccode\u003eDNN_LINEAR_COMBINED_CLASSIFIER\u003c/code\u003e, and \u003ccode\u003eAUTOML_CLASSIFIER\u003c/code\u003e.\u003c/p\u003e\n"],["\u003cp\u003eWhile classification models can be created and used without extensive ML knowledge, understanding the basics can help optimize both data and the model for better results.\u003c/p\u003e\n"],["\u003cp\u003eResources like the Machine Learning Crash Course, Intro to Machine Learning, and Intermediate Machine Learning are recommended for gaining familiarity with machine learning techniques.\u003c/p\u003e\n"]]],[],null,["# Classification overview\n=======================\n\nA common use case for machine learning is classifying new data by using a model\ntrained on similar labeled data. For example, you might want to predict whether\nan email is spam, or whether a customer product review is positive, negative, or\nneutral.\n\nYou can use any of the following models in combination with the\n[`ML.PREDICT` function](/bigquery/docs/reference/standard-sql/bigqueryml-syntax-predict)\nto perform classification:\n\n- [Logistic regression models](/bigquery/docs/reference/standard-sql/bigqueryml-syntax-create-glm): use [logistic regression](https://developers.google.com/machine-learning/crash-course/logistic-regression) by setting the `MODEL_TYPE` option to `LOGISTIC_REG`.\n- [Boosted tree models](/bigquery/docs/reference/standard-sql/bigqueryml-syntax-create-boosted-tree): use a [gradient boosted decision tree](https://developers.google.com/machine-learning/decision-forests/intro-to-gbdt) by setting the `MODEL_TYPE` option to `BOOSTED_TREE_CLASSIFIER`.\n- [Random forest models](/bigquery/docs/reference/standard-sql/bigqueryml-syntax-create-random-forest): use a [random forest](https://developers.google.com/machine-learning/decision-forests/intro-to-decision-forests) by setting the `MODEL_TYPE` option to `RANDOM_FOREST_CLASSIFIER`.\n- [Deep neural network (DNN) models](/bigquery/docs/reference/standard-sql/bigqueryml-syntax-create-dnn-models): use a [neural network](https://developers.google.com/machine-learning/crash-course/neural-networks) by setting the `MODEL_TYPE` option to `DNN_CLASSIFIER`.\n- [Wide \\& Deep models](/bigquery/docs/reference/standard-sql/bigqueryml-syntax-create-wnd-models): use [wide \\& deep learning](https://dl.acm.org/doi/10.1145/2988450.2988454) by setting the `MODEL_TYPE` option to `DNN_LINEAR_COMBINED_CLASSIFIER`.\n- [AutoML models](/bigquery/docs/reference/standard-sql/bigqueryml-syntax-create-automl): use an [AutoML classification model](/vertex-ai/docs/tabular-data/classification-regression/overview) by setting the `MODEL_TYPE` option to `AUTOML_CLASSIFIER`.\n\nRecommended knowledge\n---------------------\n\nBy using the default settings in the `CREATE MODEL` statements and the\n`ML.PREDICT` function, you can create and use a classification model even\nwithout much ML knowledge. However, having basic knowledge about\nML development helps you optimize both your data and your model to\ndeliver better results. We recommend using the following resources to develop\nfamiliarity with ML techniques and processes:\n\n- [Machine Learning Crash Course](https://developers.google.com/machine-learning/crash-course)\n- [Intro to Machine Learning](https://www.kaggle.com/learn/intro-to-machine-learning)\n- [Intermediate Machine Learning](https://www.kaggle.com/learn/intermediate-machine-learning)"]]