Einige oder alle Informationen auf dieser Seite gelten möglicherweise nicht für Trusted Cloud von S3NS.
Clustering – Übersicht
Clustering ist eine Methode des unüberwachten maschinellen Lernens, mit der ähnliche Datensätze gruppiert werden können. Dieser Ansatz ist nützlich, wenn Sie wissen möchten, welche Gruppen oder Cluster in Ihren Daten vorhanden sind, aber keine beschrifteten Daten zum Trainieren eines Modells haben. Wenn Sie beispielsweise unbeschriftete Daten zu U-Bahn-Ticketkäufen haben, können Sie diese Daten nach dem Zeitpunkt des Ticketkaufs gruppieren, um besser nachvollziehen zu können, in welchen Zeiträumen die U-Bahn am stärksten genutzt wird. Weitere Informationen finden Sie unter Was ist Clustering?
K-Means-Modelle werden häufig für das Clustering verwendet. Sie können K-Means-Modelle mit der ML.PREDICT
-Funktion verwenden, um Daten zu clustern, oder mit der ML.DETECT_ANOMALIES
-Funktion, um Anomalien zu erkennen.
Bei K-Means-Modellen werden Daten mithilfe von schwerpunktbasiertem Clustering in Clustern organisiert.
Mit der Funktion ML.CENTROIDS
können Sie Informationen zu den Schwerpunkten eines K-Means-Modells abrufen.
Empfohlene Kenntnisse
Mit den Standardeinstellungen in den CREATE MODEL
-Anweisungen und den Inferenzfunktionen können Sie auch ohne viel ML-Kenntnisse ein Clustermodell erstellen und verwenden. Grundlegende Kenntnisse über die ML-Entwicklung und insbesondere über Clustermodelle helfen Ihnen jedoch, sowohl Ihre Daten als auch Ihr Modell zu optimieren, um bessere Ergebnisse zu erzielen. Wir empfehlen die folgenden Ressourcen, um sich mit ML-Techniken und -Prozessen vertraut zu machen:
Sofern nicht anders angegeben, sind die Inhalte dieser Seite unter der Creative Commons Attribution 4.0 License und Codebeispiele unter der Apache 2.0 License lizenziert. Weitere Informationen finden Sie in den Websiterichtlinien von Google Developers. Java ist eine eingetragene Marke von Oracle und/oder seinen Partnern.
Zuletzt aktualisiert: 2025-08-17 (UTC).
[[["Leicht verständlich","easyToUnderstand","thumb-up"],["Mein Problem wurde gelöst","solvedMyProblem","thumb-up"],["Sonstiges","otherUp","thumb-up"]],[["Benötigte Informationen nicht gefunden","missingTheInformationINeed","thumb-down"],["Zu umständlich/zu viele Schritte","tooComplicatedTooManySteps","thumb-down"],["Nicht mehr aktuell","outOfDate","thumb-down"],["Problem mit der Übersetzung","translationIssue","thumb-down"],["Problem mit Beispielen/Code","samplesCodeIssue","thumb-down"],["Sonstiges","otherDown","thumb-down"]],["Zuletzt aktualisiert: 2025-08-17 (UTC)."],[[["\u003cp\u003eClustering is an unsupervised machine learning technique that groups similar records together, useful for understanding data patterns without labeled training data.\u003c/p\u003e\n"],["\u003cp\u003eK-means models, a widely used clustering method, can be used with \u003ccode\u003eML.PREDICT\u003c/code\u003e to cluster data or with \u003ccode\u003eML.DETECT_ANOMALIES\u003c/code\u003e for anomaly detection.\u003c/p\u003e\n"],["\u003cp\u003eK-means models utilize centroid-based clustering, and information about a model's centroids can be obtained using the \u003ccode\u003eML.CENTROIDS\u003c/code\u003e function.\u003c/p\u003e\n"],["\u003cp\u003eWhile you can create and use clustering models with default settings without extensive machine learning knowledge, basic familiarity with ML and clustering models can improve results.\u003c/p\u003e\n"]]],[],null,["# Clustering overview\n===================\n\nClustering is an unsupervised machine learning technique you can use to group\nsimilar records together. It is a useful approach for when you want to\nunderstand what groups or clusters you have in your data, but don't have\nlabeled data to train a model on. For example, if you had unlabeled data about\nsubway ticket purchases, you could cluster that data by ticket purchase time to\nbetter understand what time periods have the heaviest subway usage. For more\ninformation, see\n[What is clustering?](https://developers.google.com/machine-learning/clustering/overview)\n\n[K-means models](/bigquery/docs/reference/standard-sql/bigqueryml-syntax-create-kmeans)\nare widely used to perform clustering. You can use k-means models with the\n[`ML.PREDICT` function](/bigquery/docs/reference/standard-sql/bigqueryml-syntax-predict)\nto cluster data, or with the\n[`ML.DETECT_ANOMALIES` function](/bigquery/docs/reference/standard-sql/bigqueryml-syntax-detect-anomalies)\nto perform [anomaly detection](/bigquery/docs/anomaly-detection-overview).\n\nK-means models use\n[centroid-based clustering](https://developers.google.com/machine-learning/clustering/clustering-algorithms#centroid-based_clustering) to organize data into clusters.\nTo get information about a k-mean model's centroids, you can use the\n[`ML.CENTROIDS` function](/bigquery/docs/reference/standard-sql/bigqueryml-syntax-centroids).\n\nRecommended knowledge\n---------------------\n\nBy using the default settings in the `CREATE MODEL` statements and the\ninference functions, you can create and use a clustering model even\nwithout much ML knowledge. However, having basic knowledge about\nML development, and clustering models in particular,\nhelps you optimize both your data and your model to\ndeliver better results. We recommend using the following resources to develop\nfamiliarity with ML techniques and processes:\n\n- [Machine Learning Crash Course](https://developers.google.com/machine-learning/crash-course)\n- [Intro to Machine Learning](https://www.kaggle.com/learn/intro-to-machine-learning)\n- [Intermediate Machine Learning](https://www.kaggle.com/learn/intermediate-machine-learning)\n- [Clustering](https://developers.google.com/machine-learning/clustering)"]]