Algumas ou todas as informações nesta página podem não se aplicar à nuvem confiável da S3NS.
Visão geral do clustering
O clustering é uma técnica de machine learning não supervisionado que pode ser usada para agrupar
registros semelhantes. É uma abordagem útil quando você quer
entender quais grupos ou clusters você tem nos seus dados, mas não tem
dados rotulados para treinar um modelo. Por exemplo, se você tivesse dados não rotulados sobre as compras de passagens de metrô, poderia agrupar esses dados por horário de compra para entender melhor quais períodos têm o uso mais intenso do metrô. Para mais
informações, consulte
O que é agrupamento?
Os modelos K-means (link em inglês)
são muito usados para realizar a criação de clusters. É possível usar modelos k-means com a
função ML.PREDICT
para agrupar dados ou com a
função ML.DETECT_ANOMALIES
para realizar a detecção de anomalias.
Os modelos K-means usam agrupamento baseado em centroide para organizar dados em clusters.
Para receber informações sobre os centróides de um modelo k-means, use a
função ML.CENTROIDS
.
Conhecimento recomendado
Usando as configurações padrão nas instruções CREATE MODEL
e nas
funções de inferência, é possível criar e usar um modelo de agrupamento mesmo
sem muito conhecimento de ML. No entanto, ter conhecimento básico sobre o desenvolvimento de ML e modelos de agrupamento, em particular, ajuda a otimizar os dados e o modelo para gerar resultados melhores. Recomendamos o uso dos seguintes recursos para se familiarizar
com as técnicas e os processos de ML:
Exceto em caso de indicação contrária, o conteúdo desta página é licenciado de acordo com a Licença de atribuição 4.0 do Creative Commons, e as amostras de código são licenciadas de acordo com a Licença Apache 2.0. Para mais detalhes, consulte as políticas do site do Google Developers. Java é uma marca registrada da Oracle e/ou afiliadas.
Última atualização 2025-08-17 UTC.
[[["Fácil de entender","easyToUnderstand","thumb-up"],["Meu problema foi resolvido","solvedMyProblem","thumb-up"],["Outro","otherUp","thumb-up"]],[["Não contém as informações de que eu preciso","missingTheInformationINeed","thumb-down"],["Muito complicado / etapas demais","tooComplicatedTooManySteps","thumb-down"],["Desatualizado","outOfDate","thumb-down"],["Problema na tradução","translationIssue","thumb-down"],["Problema com as amostras / o código","samplesCodeIssue","thumb-down"],["Outro","otherDown","thumb-down"]],["Última atualização 2025-08-17 UTC."],[[["\u003cp\u003eClustering is an unsupervised machine learning technique that groups similar records together, useful for understanding data patterns without labeled training data.\u003c/p\u003e\n"],["\u003cp\u003eK-means models, a widely used clustering method, can be used with \u003ccode\u003eML.PREDICT\u003c/code\u003e to cluster data or with \u003ccode\u003eML.DETECT_ANOMALIES\u003c/code\u003e for anomaly detection.\u003c/p\u003e\n"],["\u003cp\u003eK-means models utilize centroid-based clustering, and information about a model's centroids can be obtained using the \u003ccode\u003eML.CENTROIDS\u003c/code\u003e function.\u003c/p\u003e\n"],["\u003cp\u003eWhile you can create and use clustering models with default settings without extensive machine learning knowledge, basic familiarity with ML and clustering models can improve results.\u003c/p\u003e\n"]]],[],null,["# Clustering overview\n===================\n\nClustering is an unsupervised machine learning technique you can use to group\nsimilar records together. It is a useful approach for when you want to\nunderstand what groups or clusters you have in your data, but don't have\nlabeled data to train a model on. For example, if you had unlabeled data about\nsubway ticket purchases, you could cluster that data by ticket purchase time to\nbetter understand what time periods have the heaviest subway usage. For more\ninformation, see\n[What is clustering?](https://developers.google.com/machine-learning/clustering/overview)\n\n[K-means models](/bigquery/docs/reference/standard-sql/bigqueryml-syntax-create-kmeans)\nare widely used to perform clustering. You can use k-means models with the\n[`ML.PREDICT` function](/bigquery/docs/reference/standard-sql/bigqueryml-syntax-predict)\nto cluster data, or with the\n[`ML.DETECT_ANOMALIES` function](/bigquery/docs/reference/standard-sql/bigqueryml-syntax-detect-anomalies)\nto perform [anomaly detection](/bigquery/docs/anomaly-detection-overview).\n\nK-means models use\n[centroid-based clustering](https://developers.google.com/machine-learning/clustering/clustering-algorithms#centroid-based_clustering) to organize data into clusters.\nTo get information about a k-mean model's centroids, you can use the\n[`ML.CENTROIDS` function](/bigquery/docs/reference/standard-sql/bigqueryml-syntax-centroids).\n\nRecommended knowledge\n---------------------\n\nBy using the default settings in the `CREATE MODEL` statements and the\ninference functions, you can create and use a clustering model even\nwithout much ML knowledge. However, having basic knowledge about\nML development, and clustering models in particular,\nhelps you optimize both your data and your model to\ndeliver better results. We recommend using the following resources to develop\nfamiliarity with ML techniques and processes:\n\n- [Machine Learning Crash Course](https://developers.google.com/machine-learning/crash-course)\n- [Intro to Machine Learning](https://www.kaggle.com/learn/intro-to-machine-learning)\n- [Intermediate Machine Learning](https://www.kaggle.com/learn/intermediate-machine-learning)\n- [Clustering](https://developers.google.com/machine-learning/clustering)"]]