이 페이지의 일부 또는 모든 정보는 Trusted Cloud by S3NS에 적용되지 않을 수 있습니다.
회귀 개요
머신러닝의 일반적인 사용 사례는 유사한 이전 데이터로 학습된 모델을 사용하여 새 데이터의 숫자 측정항목 값을 예측하는 것입니다.
예를 들어 주택의 예상 판매 가격을 예측할 수 있습니다. 주택의 위치와 특성을 특징으로 사용하여 이 주택을 이미 판매된 유사한 주택과 비교하고 판매 가격을 사용하여 주택 판매 가격을 추정할 수 있습니다.
ML.PREDICT
함수와 함께 다음 모델을 사용하여 회귀를 수행할 수 있습니다.
추천 지식
CREATE MODEL
문의 기본 설정과 ML.PREDICT
함수를 사용하면 ML 지식이 많지 않더라도 회귀 모델을 만들고 사용할 수 있습니다. 하지만 ML 개발에 대한 기본 지식이 있으면 데이터와 모델을 모두 최적화하여 더 나은 결과를 얻을 수 있습니다. 다음 리소스를 사용하여 ML 기법과 프로세스에 익숙해지는 것이 좋습니다.
달리 명시되지 않는 한 이 페이지의 콘텐츠에는 Creative Commons Attribution 4.0 라이선스에 따라 라이선스가 부여되며, 코드 샘플에는 Apache 2.0 라이선스에 따라 라이선스가 부여됩니다. 자세한 내용은 Google Developers 사이트 정책을 참조하세요. 자바는 Oracle 및/또는 Oracle 계열사의 등록 상표입니다.
최종 업데이트: 2025-08-26(UTC)
[[["이해하기 쉬움","easyToUnderstand","thumb-up"],["문제가 해결됨","solvedMyProblem","thumb-up"],["기타","otherUp","thumb-up"]],[["필요한 정보가 없음","missingTheInformationINeed","thumb-down"],["너무 복잡함/단계 수가 너무 많음","tooComplicatedTooManySteps","thumb-down"],["오래됨","outOfDate","thumb-down"],["번역 문제","translationIssue","thumb-down"],["샘플/코드 문제","samplesCodeIssue","thumb-down"],["기타","otherDown","thumb-down"]],["최종 업데이트: 2025-08-26(UTC)"],[[["\u003cp\u003eRegression models are used to predict numerical values for new data based on patterns learned from historical data, such as predicting a house's sale price.\u003c/p\u003e\n"],["\u003cp\u003eThe \u003ccode\u003eML.PREDICT\u003c/code\u003e function can be used in conjunction with various models, including linear regression, boosted tree, random forest, deep neural network (DNN), wide & deep, and AutoML models, to perform regression.\u003c/p\u003e\n"],["\u003cp\u003eYou can create and use a regression model with default settings without extensive machine learning (ML) knowledge, though basic ML familiarity can help improve results.\u003c/p\u003e\n"],["\u003cp\u003eSeveral resources like Google's Machine Learning Crash Course and Kaggle's ML tutorials are available to help build familiarity with ML techniques and processes.\u003c/p\u003e\n"]]],[],null,["# Regression overview\n===================\n\nA common use case for machine learning is predicting the value of a numerical\nmetric for new data by using a model trained on similar historical data.\nFor example, you might want to predict a house's expected sale price. By using\nthe house's location and characteristics as features, you can compare this house\nto similar houses that have already sold, and use their sales prices to estimate\nthe house's sale price.\n\nYou can use any of the following models in combination with the\n[`ML.PREDICT` function](/bigquery/docs/reference/standard-sql/bigqueryml-syntax-predict)\nto perform regression:\n\n- [Linear regression models](/bigquery/docs/reference/standard-sql/bigqueryml-syntax-create-glm): use [linear regression](https://developers.google.com/machine-learning/crash-course/linear-regression) by setting the `MODEL_TYPE` option to `LINEAR_REG`.\n- [Boosted tree models](/bigquery/docs/reference/standard-sql/bigqueryml-syntax-create-boosted-tree): use a [gradient boosted decision tree](https://developers.google.com/machine-learning/decision-forests/intro-to-gbdt) by setting the `MODEL_TYPE` option to `BOOSTED_TREE_REGRESSOR`.\n- [Random forest models](/bigquery/docs/reference/standard-sql/bigqueryml-syntax-create-random-forest): use a [random forest](https://developers.google.com/machine-learning/decision-forests/intro-to-decision-forests) by setting the `MODEL_TYPE` option to `RANDOM_FOREST_REGRESSOR`.\n- [Deep neural network (DNN) models](/bigquery/docs/reference/standard-sql/bigqueryml-syntax-create-dnn-models): use a [neural network](https://developers.google.com/machine-learning/crash-course/neural-networks) by setting the `MODEL_TYPE` option to `DNN_REGRESSOR`.\n- [Wide \\& Deep models](/bigquery/docs/reference/standard-sql/bigqueryml-syntax-create-wnd-models): use [wide \\& deep learning](https://dl.acm.org/doi/10.1145/2988450.2988454) by setting the `MODEL_TYPE` option to `DNN_LINEAR_COMBINED_REGRESSOR`.\n- [AutoML models](/bigquery/docs/reference/standard-sql/bigqueryml-syntax-create-automl): use an [AutoML classification model](/vertex-ai/docs/tabular-data/classification-regression/overview) by setting the `MODEL_TYPE` option to `AUTOML_REGRESSOR`.\n\nRecommended knowledge\n---------------------\n\nBy using the default settings in the `CREATE MODEL` statements and the\n`ML.PREDICT` function, you can create and use a regression model even\nwithout much ML knowledge. However, having basic knowledge about\nML development helps you optimize both your data and your model to\ndeliver better results. We recommend using the following resources to develop\nfamiliarity with ML techniques and processes:\n\n- [Machine Learning Crash Course](https://developers.google.com/machine-learning/crash-course)\n- [Intro to Machine Learning](https://www.kaggle.com/learn/intro-to-machine-learning)\n- [Intermediate Machine Learning](https://www.kaggle.com/learn/intermediate-machine-learning)"]]