本頁面中的部分或全部資訊可能不適用於 Trusted Cloud by S3NS。
迴歸總覽
機器學習的常見用途,就是使用以類似歷史資料訓練的模型,預測新資料的數值指標值。舉例來說,您可能想預測房屋的預期售價。您可以將房屋的位置和特徵做為特徵,將這間房屋與已售出的類似房屋進行比較,並根據這些房屋的售價來估算房屋的售價。
您可以搭配使用下列任一模型和 ML.PREDICT
函式執行迴歸:
建議的知識
只要使用 CREATE MODEL
陳述式和 ML.PREDICT
函式中的預設設定,即使沒有太多機器學習知識,也能建立及使用迴歸模型。不過,瞭解機器學習開發的基本知識,有助您最佳化資料和模型,進而獲得更優異的結果。建議您參考下列資源,熟悉機器學習技術和程序:
除非另有註明,否則本頁面中的內容是採用創用 CC 姓名標示 4.0 授權,程式碼範例則為阿帕契 2.0 授權。詳情請參閱《Google Developers 網站政策》。Java 是 Oracle 和/或其關聯企業的註冊商標。
上次更新時間:2025-06-19 (世界標準時間)。
[[["容易理解","easyToUnderstand","thumb-up"],["確實解決了我的問題","solvedMyProblem","thumb-up"],["其他","otherUp","thumb-up"]],[["缺少我需要的資訊","missingTheInformationINeed","thumb-down"],["過於複雜/步驟過多","tooComplicatedTooManySteps","thumb-down"],["過時","outOfDate","thumb-down"],["翻譯問題","translationIssue","thumb-down"],["示例/程式碼問題","samplesCodeIssue","thumb-down"],["其他","otherDown","thumb-down"]],["上次更新時間:2025-06-19 (世界標準時間)。"],[[["Regression models are used to predict numerical values for new data based on patterns learned from historical data, such as predicting a house's sale price."],["The `ML.PREDICT` function can be used in conjunction with various models, including linear regression, boosted tree, random forest, deep neural network (DNN), wide & deep, and AutoML models, to perform regression."],["You can create and use a regression model with default settings without extensive machine learning (ML) knowledge, though basic ML familiarity can help improve results."],["Several resources like Google's Machine Learning Crash Course and Kaggle's ML tutorials are available to help build familiarity with ML techniques and processes."]]],[]]