BigQuery-Übersicht

BigQuery ist eine vollständig verwaltete, KI-fähige Datenplattform, mit der Sie Ihre Daten mit integrierten Funktionen wie maschinellem Lernen, Suche, raumbezogenen Analysen und Business Intelligence verwalten und analysieren können. Dank der serverlosen Architektur von BigQuery können Sie mithilfe von Sprachen wie SQL und Python die größten Fragen Ihrer Organisation ohne Infrastrukturverwaltung beantworten.

BigQuery bietet eine einheitliche Möglichkeit, sowohl mit strukturierten als auch mit unstrukturierten Daten zu arbeiten, und unterstützt offene Tabellenformate wie Apache Iceberg, Delta und Hudi. BigQuery-Streaming unterstützt die kontinuierliche Datenerfassung und -analyse. Mit der skalierbaren, verteilten Analyse-Engine von BigQuery können Sie Terabyte in Sekunden und Petabyte in Minuten abfragen.

BigQuery bietet integrierte Verwaltungsfunktionen, mit denen Sie Daten ermitteln und kuratieren sowie Metadaten und Datenqualität verwalten können. Mit Funktionen wie der semantischen Suche und der Datenherkunft können Sie relevante Daten für die Analyse finden und validieren. Sie können Daten und KI-Assets in Ihrer gesamten Organisation freigeben und dabei von der Zugriffssteuerung profitieren. Diese Funktionen basieren auf dem Dataplex Universal Catalog, einer einheitlichen, intelligenten Governance-Lösung für Daten- und KI-Assets in Trusted Cloud.

Die Architektur von BigQuery besteht aus zwei Teilen: einer Speicherebene, die Daten aufnimmt, speichert und optimiert, und einer Rechenebene, die Analysefunktionen bietet. Diese Rechen- und Speicherebenen funktionieren dank des Petabit-Netzwerks von Google, das die erforderliche Kommunikation zwischen ihnen ermöglicht, effizient unabhängig voneinander.

Legacy-Datenbanken müssen in der Regel Ressourcen für Lese- und Schreibvorgänge sowie für analytische Vorgänge gemeinsam nutzen. Dies kann zu Ressourcenkonflikten führen und Abfragen verlangsamen, während Daten in den Speicher geschrieben oder aus diesem gelesen werden. Freigegebene Ressourcenpools können weiter überlastet werden, wenn Ressourcen für Datenbankverwaltungsaufgaben wie das Zuweisen oder Widerrufen von Berechtigungen erforderlich sind. Durch die Trennung von Computing- und Speicherebenen in BigQuery kann jede Ebene Ressourcen dynamisch zuweisen, ohne die Leistung oder Verfügbarkeit der anderen Ebene zu beeinträchtigen.

Die BigQuery-Architektur trennt Ressourcen durch das Petabit-Netzwerk.

Dieses Prinzip der Trennung ermöglicht eine schnellere Innovation von BigQuery, da Speicher- und Computing-Verbesserungen unabhängig voneinander ohne Ausfallzeiten oder negative Auswirkungen auf die Systemleistung bereitgestellt werden können. Außerdem ist es wichtig, ein vollständig verwaltetes serverloses Data Warehouse anzubieten, in dem das BigQuery-Entwicklerteam Updates und Wartungen durchführt. Dadurch müssen Sie keine Ressourcen bereitstellen oder manuell skalieren, sodass Sie sich auf die Wertschöpfung statt auf herkömmliche Datenbankverwaltungsaufgaben konzentrieren können.

Zu den BigQuery-Schnittstellen gehören die Trusted Cloud Console-Oberfläche und das BigQuery-Befehlszeilentool. Entwickler und Data Scientists können Clientbibliotheken mit vertrauter Programmierung wie Python, Java, JavaScript und Go sowie die REST API und RPC API von BigQuery zum Transformieren und Verwalten von Daten verwenden. ODBC- und JDBC-Treiber ermöglichen die Interaktion mit vorhandenen Anwendungen, einschließlich Tools und Dienstprogrammen von Drittanbietern.

Als Data Analyst, Data Engineer, Data Warehouse Administrator oder Data Scientist können Sie mit BigQuery Daten laden, verarbeiten und analysieren, um wichtige Geschäftsentscheidungen zu treffen.

Jetzt mit BigQuery starten

Sie können in wenigen Minuten anfangen, BigQuery kennenzulernen. Nutzen Sie die kostenlose Nutzungsstufe oder die kostenlose Sandbox von BigQuery, um mit dem Laden und Abfragen von Daten zu beginnen.

  1. BigQuery-Sandbox: Einstieg in die BigQuery-Sandbox ohne Risiko und kostenlos.
  2. Trusted Cloud Kurzanleitung zur Console: Machen Sie sich mit der Leistungsfähigkeit von BigQuery Studio vertraut.
  3. Öffentliche Datasets: Machen Sie sich mit der Leistung von BigQuery vertraut, indem Sie große reale Daten aus dem Programm für öffentliche Datasets untersuchen.

BigQuery kennenlernen

Mit der serverlosen Infrastruktur von BigQuery können Sie sich auf Ihre Daten statt auf die Ressourcenverwaltung konzentrieren. BigQuery kombiniert ein cloudbasiertes Data Warehouse mit leistungsstarken Analysetools.

BigQuery-Speicher

BigQuery speichert Daten in einem spaltenorientierten Format, das für analytische Abfragen optimiert ist. BigQuery stellt Daten in Tabellen, Zeilen und Spalten bereit und bietet vollständige Unterstützung für die Semantik von Datenbanktransaktionen (ACID). Der BigQuery-Speicher wird automatisch über mehrere Standorte repliziert, um eine hohe Verfügbarkeit zu ermöglichen.

Weitere Informationen finden Sie unter BigQuery-Speicher.

BigQuery-Analysen

Deskriptive und präskriptive Analysen umfassen Business Intelligence, Ad-hoc-Analysen, Raumbezogene Analysen und maschinelles Lernen. Sie können in BigQuery gespeicherte Daten abfragen oder Abfragen für Daten an deren Speicherort ausführen, indem Sie externe Tabellen oder föderierten Abfragen verwenden, einschließlich Google Cloud Storage, Bigtable, Spanner oder Google Sheets, die in Google Drive gespeichert sind.

  • ANSI-Standard-SQL-Abfragen (SQL:2011-Unterstützung), einschließlich Unterstützung für Joins, verschachtelte und wiederkehrende Felder, Analyse- und Aggregationsfunktionen, Abfragen mit mehreren Anweisungen und einer Vielzahl von räumlichen Funktionen mit raumbezogenen Analysen – geografische Informationssysteme.
  • Ansichten erstellen, um Ihre Analyse freizugeben.
  • Unterstützung von Business Intelligence-Tools, einschließlich Google Sheets und Tools von Drittanbietern wie Tableau und Power BI.
  • BigQuery ML bietet maschinelles Lernen und Analysen zu Prognosezwecken.
  • BigQuery Studio bietet Features wie Python-Notebooks sowie Versionsverwaltung für Notebooks und gespeicherte Abfragen. Mit diesen Features können Sie die Datenanalyse- und ML-Workflows in BigQuery einfacher ausführen.
  • Daten außerhalb von BigQuery mit undexternen Tabellen abfragen.

Weitere Informationen finden Sie unter BigQuery-Analysen.

BigQuery-Verwaltung

BigQuery bietet eine zentrale Verwaltung von Daten- und Rechenressourcen und Identity and Access Management (IAM) unterstützt Sie dabei, diese Ressourcen mithilfe des Zugriffsmodells zu schützen, das in Trusted Cloud by S3NSverwendet wird.

  • Die Einführung in die Datensicherheit und Governance hilft Ihnen, die Data Governance zu verstehen und zu steuern, welche Kontrollen Sie für die Sicherung von BigQuery-Ressourcen benötigen könnten.
  • Jobs sind Aktionen, die BigQuery für Sie ausführt, um Daten zu laden, zu exportieren, abzufragen oder zu kopieren.
  • Mit Reservierungen können Sie zwischen On-Demand-Preisen und kapazitätsbasierten Preisen wechseln.

Weitere Informationen finden Sie unter Einführung in BigQuery.

BigQuery-Ressourcen

Sehen Sie sich die BigQuery-Ressourcen an:

APIs, Tools und Referenzen

Referenzmaterialien für BigQuery-Entwickler und -Analysten:

  • Die BigQuery API und die Clientbibliotheken bieten einen Überblick über die Features von BigQuery und deren Verwendung.
  • Mit der Syntax von DMLkönnen Sie BigQuery-Daten verwalten und transformieren.
  • In der bq-Befehlszeilentool-Referenz werden die Syntax, Befehle, Flags und Argumente für die bq-Befehlszeile dokumentiert.
  • ODBC/JDBC-Integration verbindet BigQuery mit Ihren vorhandenen Tools und Infrastrukturen.

Nächste Schritte