このページの一部またはすべての情報は、S3NS の Trusted Cloud に適用されない場合があります。
BigQuery ML は、モデルタイプごとに異なる入力特徴タイプをサポートしています。次の表に、サポートされている入力特徴タイプを示します。
BigQuery ML は、モデルのトレーニング中に ARRAY<numerical>
を密ベクトル入力としてサポートしています。エンベディング機能は、特別な種類の密ベクトルです。詳細については、ML.GENERATE_EMBEDDING
関数をご覧ください。
BigQuery ML は、モデルのトレーニング中のスパース入力として ARRAY<STRUCT>
をサポートしています。各構造体には、ゼロベースのインデックスを表す INT64
値と、対応する値を表す数値型が含まれています。
次に示すのは、整数配列 [0,1,0,0,0,0,1]
のスパース テンソル入力の例です。
ARRAY<STRUCT<k INT64, v INT64>>[(1, 1), (6, 1)] AS f1
特に記載のない限り、このページのコンテンツはクリエイティブ・コモンズの表示 4.0 ライセンスにより使用許諾されます。コードサンプルは Apache 2.0 ライセンスにより使用許諾されます。詳しくは、Google Developers サイトのポリシーをご覧ください。Java は Oracle および関連会社の登録商標です。
最終更新日 2025-08-17 UTC。
[[["わかりやすい","easyToUnderstand","thumb-up"],["問題の解決に役立った","solvedMyProblem","thumb-up"],["その他","otherUp","thumb-up"]],[["必要な情報がない","missingTheInformationINeed","thumb-down"],["複雑すぎる / 手順が多すぎる","tooComplicatedTooManySteps","thumb-down"],["最新ではない","outOfDate","thumb-down"],["翻訳に関する問題","translationIssue","thumb-down"],["サンプル / コードに問題がある","samplesCodeIssue","thumb-down"],["その他","otherDown","thumb-down"]],["最終更新日 2025-08-17 UTC。"],[[["\u003cp\u003eBigQuery ML accommodates various input feature types, tailored to different model categories such as supervised, unsupervised, and time series models.\u003c/p\u003e\n"],["\u003cp\u003eNumeric, categorical, timestamp, struct, geography, and array types are supported across many BigQuery ML models, with specific models having certain specificities.\u003c/p\u003e\n"],["\u003cp\u003eDense vector input is supported using \u003ccode\u003eARRAY<numerical>\u003c/code\u003e for model training, which includes a special embedding feature as seen in the \u003ccode\u003eML.GENERATE_EMBEDDING\u003c/code\u003e function.\u003c/p\u003e\n"],["\u003cp\u003eSparse input during model training is supported through the use of \u003ccode\u003eARRAY<STRUCT>\u003c/code\u003e, where each struct contains an \u003ccode\u003eINT64\u003c/code\u003e index and a numeric value.\u003c/p\u003e\n"],["\u003cp\u003eMatrix Factorization and ARIMA_PLUS models have unique input requirements, with the provided input types for ARIMA_PLUS_XREG only applying to external regressors.\u003c/p\u003e\n"]]],[],null,["# Supported input feature types\n=============================\n\nBigQuery ML supports different input feature types for different model types.\nSupported input feature types are listed in the following table:\n\n| **Note:** [Matrix Factorization](/bigquery/docs/reference/standard-sql/bigqueryml-syntax-create-matrix-factorization#inputs) and [ARIMA_PLUS](/bigquery/docs/reference/standard-sql/bigqueryml-syntax-create-time-series#time_series_data_col) models have special input feature types. The input types listed for [ARIMA_PLUS_XREG](/bigquery/docs/reference/standard-sql/bigqueryml-syntax-create-multivariate-time-series#time_series_data_col) are only for external regressors.\n\nDense vector input\n------------------\n\nBigQuery ML supports `ARRAY\u003cnumerical\u003e` as dense vector input\nduring model training. The embedding feature is a special type of dense vector.\nsee the [`ML.GENERATE_EMBEDDING` function](/bigquery/docs/reference/standard-sql/bigqueryml-syntax-generate-embedding) for more information.\n\nSparse input\n------------\n\nBigQuery ML supports `ARRAY\u003cSTRUCT\u003e` as sparse input during\nmodel training. Each struct contains an `INT64` value that represents its\nzero-based index, and a\n[numeric type](/bigquery/docs/reference/standard-sql/data-types#numeric_types)\nthat represents the corresponding value.\n\nBelow is an example of a sparse tensor input for the integer array\n`[0,1,0,0,0,0,1]`: \n\n ARRAY\u003cSTRUCT\u003ck INT64, v INT64\u003e\u003e[(1, 1), (6, 1)] AS f1"]]