Trabajar con datos de serie temporal

En este documento se describe cómo usar las funciones SQL para admitir el análisis de series temporales.

Introducción

Una serie temporal es una secuencia de puntos de datos, cada uno de los cuales consta de una hora y un valor asociado a esa hora. Por lo general, una serie temporal también tiene un identificador que le asigna un nombre único.

En las bases de datos relacionales, una serie temporal se modela como una tabla con los siguientes grupos de columnas:

  • Columna de tiempo
  • Puede tener columnas de partición, como el código postal.
  • Una o varias columnas de valores, o un tipo STRUCT que combine varios valores (por ejemplo, temperatura e ICA)

A continuación, se muestra un ejemplo de datos de serie temporal modelados como una tabla:

Ejemplo de tabla de serie temporal.

Agregar una serie temporal

En el análisis de series temporales, la agregación de tiempo es una agregación que se realiza a lo largo del eje temporal.

Puedes realizar agregaciones de tiempo en BigQuery con la ayuda de funciones de creación de segmentos de tiempo (TIMESTAMP_BUCKET, DATE_BUCKET y DATETIME_BUCKET). Las funciones de creación de segmentos de tiempo asignan los valores de tiempo de entrada al segmento al que pertenecen.

Normalmente, la agregación de tiempo se realiza para combinar varios puntos de datos de un periodo en un único punto de datos mediante una función de agregación, como AVG, MIN, MAX, COUNT o SUM. Por ejemplo, la latencia media de las solicitudes de 15 minutos, las temperaturas mínimas y máximas diarias y el número diario de viajes en taxi.

Para las consultas de esta sección, crea una tabla llamada mydataset.environmental_data_hourly:

CREATE OR REPLACE TABLE mydataset.environmental_data_hourly AS
SELECT * FROM UNNEST(
  ARRAY<STRUCT<zip_code INT64, time TIMESTAMP, aqi INT64, temperature INT64>>[
    STRUCT(60606, TIMESTAMP '2020-09-08 00:30:51', 22, 66),
    STRUCT(60606, TIMESTAMP '2020-09-08 01:32:10', 23, 63),
    STRUCT(60606, TIMESTAMP '2020-09-08 02:30:35', 22, 60),
    STRUCT(60606, TIMESTAMP '2020-09-08 03:29:39', 21, 58),
    STRUCT(60606, TIMESTAMP '2020-09-08 04:33:05', 21, 59),
    STRUCT(60606, TIMESTAMP '2020-09-08 05:32:01', 21, 57),
    STRUCT(60606, TIMESTAMP '2020-09-08 06:31:14', 22, 56),
    STRUCT(60606, TIMESTAMP '2020-09-08 07:31:06', 28, 55),
    STRUCT(60606, TIMESTAMP '2020-09-08 08:29:59', 30, 55),
    STRUCT(60606, TIMESTAMP '2020-09-08 09:29:34', 31, 55),
    STRUCT(60606, TIMESTAMP '2020-09-08 10:31:24', 38, 56),
    STRUCT(60606, TIMESTAMP '2020-09-08 11:31:24', 38, 56),
    STRUCT(60606, TIMESTAMP '2020-09-08 12:32:38', 38, 57),
    STRUCT(60606, TIMESTAMP '2020-09-08 13:29:59', 38, 56),
    STRUCT(60606, TIMESTAMP '2020-09-08 14:31:22', 43, 59),
    STRUCT(60606, TIMESTAMP '2020-09-08 15:31:38', 42, 63),
    STRUCT(60606, TIMESTAMP '2020-09-08 16:34:22', 43, 65),
    STRUCT(60606, TIMESTAMP '2020-09-08 17:33:23', 42, 68),
    STRUCT(60606, TIMESTAMP '2020-09-08 18:28:47', 36, 69),
    STRUCT(60606, TIMESTAMP '2020-09-08 19:30:28', 34, 67),
    STRUCT(60606, TIMESTAMP '2020-09-08 20:30:53', 29, 67),
    STRUCT(60606, TIMESTAMP '2020-09-08 21:32:28', 27, 67),
    STRUCT(60606, TIMESTAMP '2020-09-08 22:31:45', 25, 65),
    STRUCT(60606, TIMESTAMP '2020-09-08 23:31:02', 22, 63),
    STRUCT(94105, TIMESTAMP '2020-09-08 00:07:11', 60, 74),
    STRUCT(94105, TIMESTAMP '2020-09-08 01:07:24', 61, 73),
    STRUCT(94105, TIMESTAMP '2020-09-08 02:08:07', 60, 71),
    STRUCT(94105, TIMESTAMP '2020-09-08 03:11:05', 69, 69),
    STRUCT(94105, TIMESTAMP '2020-09-08 04:07:26', 72, 67),
    STRUCT(94105, TIMESTAMP '2020-09-08 05:08:11', 70, 66),
    STRUCT(94105, TIMESTAMP '2020-09-08 06:07:30', 68, 65),
    STRUCT(94105, TIMESTAMP '2020-09-08 07:07:10', 77, 64),
    STRUCT(94105, TIMESTAMP '2020-09-08 08:06:35', 81, 64),
    STRUCT(94105, TIMESTAMP '2020-09-08 09:10:18', 82, 63),
    STRUCT(94105, TIMESTAMP '2020-09-08 10:08:10', 107, 62),
    STRUCT(94105, TIMESTAMP '2020-09-08 11:08:01', 115, 62),
    STRUCT(94105, TIMESTAMP '2020-09-08 12:07:39', 120, 62),
    STRUCT(94105, TIMESTAMP '2020-09-08 13:06:03', 125, 61),
    STRUCT(94105, TIMESTAMP '2020-09-08 14:08:37', 129, 62),
    STRUCT(94105, TIMESTAMP '2020-09-08 15:09:19', 150, 62),
    STRUCT(94105, TIMESTAMP '2020-09-08 16:06:39', 151, 62),
    STRUCT(94105, TIMESTAMP '2020-09-08 17:08:01', 155, 63),
    STRUCT(94105, TIMESTAMP '2020-09-08 18:09:23', 154, 64),
    STRUCT(94105, TIMESTAMP '2020-09-08 19:08:43', 151, 67),
    STRUCT(94105, TIMESTAMP '2020-09-08 20:07:19', 150, 69),
    STRUCT(94105, TIMESTAMP '2020-09-08 21:07:37', 148, 72),
    STRUCT(94105, TIMESTAMP '2020-09-08 22:08:01', 143, 76),
    STRUCT(94105, TIMESTAMP '2020-09-08 23:08:41', 137, 75)
]);

Una observación interesante sobre los datos anteriores es que las mediciones se toman en periodos de tiempo arbitrarios, conocidos como series temporales no alineadas. La agregación es una de las formas en las que se puede alinear una serie temporal.

Obtener una media de 3 horas

La siguiente consulta calcula el índice de calidad del aire (ICA) y la temperatura medios de 3 horas de cada código postal. La función TIMESTAMP_BUCKET agrega el tiempo asignando cada valor de tiempo a un día concreto.

SELECT
  TIMESTAMP_BUCKET(time, INTERVAL 3 HOUR) AS time,
  zip_code,
  CAST(AVG(aqi) AS INT64) AS aqi,
  CAST(AVG(temperature) AS INT64) AS temperature
FROM mydataset.environmental_data_hourly
GROUP BY zip_code, time
ORDER BY zip_code, time;

/*---------------------+----------+-----+-------------+
 |        time         | zip_code | aqi | temperature |
 +---------------------+----------+-----+-------------+
 | 2020-09-08 00:00:00 |    60606 |  22 |          63 |
 | 2020-09-08 03:00:00 |    60606 |  21 |          58 |
 | 2020-09-08 06:00:00 |    60606 |  27 |          55 |
 | 2020-09-08 09:00:00 |    60606 |  36 |          56 |
 | 2020-09-08 12:00:00 |    60606 |  40 |          57 |
 | 2020-09-08 15:00:00 |    60606 |  42 |          65 |
 | 2020-09-08 18:00:00 |    60606 |  33 |          68 |
 | 2020-09-08 21:00:00 |    60606 |  25 |          65 |
 | 2020-09-08 00:00:00 |    94105 |  60 |          73 |
 | 2020-09-08 03:00:00 |    94105 |  70 |          67 |
 | 2020-09-08 06:00:00 |    94105 |  75 |          64 |
 | 2020-09-08 09:00:00 |    94105 | 101 |          62 |
 | 2020-09-08 12:00:00 |    94105 | 125 |          62 |
 | 2020-09-08 15:00:00 |    94105 | 152 |          62 |
 | 2020-09-08 18:00:00 |    94105 | 152 |          67 |
 | 2020-09-08 21:00:00 |    94105 | 143 |          74 |
 +---------------------+----------+-----+-------------*/

Obtener un valor mínimo y máximo de 3 horas

En la siguiente consulta, se calculan las temperaturas mínimas y máximas de 3 horas de cada código postal:

SELECT
  TIMESTAMP_BUCKET(time, INTERVAL 3 HOUR) AS time,
  zip_code,
  MIN(temperature) AS temperature_min,
  MAX(temperature) AS temperature_max,
FROM mydataset.environmental_data_hourly
GROUP BY zip_code, time
ORDER BY zip_code, time;

/*---------------------+----------+-----------------+-----------------+
 |        time         | zip_code | temperature_min | temperature_max |
 +---------------------+----------+-----------------+-----------------+
 | 2020-09-08 00:00:00 |    60606 |              60 |              66 |
 | 2020-09-08 03:00:00 |    60606 |              57 |              59 |
 | 2020-09-08 06:00:00 |    60606 |              55 |              56 |
 | 2020-09-08 09:00:00 |    60606 |              55 |              56 |
 | 2020-09-08 12:00:00 |    60606 |              56 |              59 |
 | 2020-09-08 15:00:00 |    60606 |              63 |              68 |
 | 2020-09-08 18:00:00 |    60606 |              67 |              69 |
 | 2020-09-08 21:00:00 |    60606 |              63 |              67 |
 | 2020-09-08 00:00:00 |    94105 |              71 |              74 |
 | 2020-09-08 03:00:00 |    94105 |              66 |              69 |
 | 2020-09-08 06:00:00 |    94105 |              64 |              65 |
 | 2020-09-08 09:00:00 |    94105 |              62 |              63 |
 | 2020-09-08 12:00:00 |    94105 |              61 |              62 |
 | 2020-09-08 15:00:00 |    94105 |              62 |              63 |
 | 2020-09-08 18:00:00 |    94105 |              64 |              69 |
 | 2020-09-08 21:00:00 |    94105 |              72 |              76 |
 +---------------------+----------+-----------------+-----------------*/

Obtener una media de 3 horas con una alineación personalizada

Cuando realizas una agregación de series temporales, usas una alineación específica para las ventanas de series temporales, ya sea de forma implícita o explícita. Las consultas anteriores usaban la alineación implícita, que generaba contenedores que empezaban a horas como 00:00:00, 03:00:00 y 06:00:00. Para definir explícitamente esta alineación en la función TIMESTAMP_BUCKET, pasa un argumento opcional que especifique el origen.

En la siguiente consulta, el origen se define como 2020-01-01 02:00:00. De esta forma, se cambia la alineación y se generan segmentos que empiezan a horas como 02:00:00, 05:00:00 y 08:00:00:

SELECT
  TIMESTAMP_BUCKET(time, INTERVAL 3 HOUR, TIMESTAMP '2020-01-01 02:00:00') AS time,
  zip_code,
  CAST(AVG(aqi) AS INT64) AS aqi,
  CAST(AVG(temperature) AS INT64) AS temperature
FROM mydataset.environmental_data_hourly
GROUP BY zip_code, time
ORDER BY zip_code, time;

/*---------------------+----------+-----+-------------+
 |        time         | zip_code | aqi | temperature |
 +---------------------+----------+-----+-------------+
 | 2020-09-07 23:00:00 |    60606 |  23 |          65 |
 | 2020-09-08 02:00:00 |    60606 |  21 |          59 |
 | 2020-09-08 05:00:00 |    60606 |  24 |          56 |
 | 2020-09-08 08:00:00 |    60606 |  33 |          55 |
 | 2020-09-08 11:00:00 |    60606 |  38 |          56 |
 | 2020-09-08 14:00:00 |    60606 |  43 |          62 |
 | 2020-09-08 17:00:00 |    60606 |  37 |          68 |
 | 2020-09-08 20:00:00 |    60606 |  27 |          66 |
 | 2020-09-08 23:00:00 |    60606 |  22 |          63 |
 | 2020-09-07 23:00:00 |    94105 |  61 |          74 |
 | 2020-09-08 02:00:00 |    94105 |  67 |          69 |
 | 2020-09-08 05:00:00 |    94105 |  72 |          65 |
 | 2020-09-08 08:00:00 |    94105 |  90 |          63 |
 | 2020-09-08 11:00:00 |    94105 | 120 |          62 |
 | 2020-09-08 14:00:00 |    94105 | 143 |          62 |
 | 2020-09-08 17:00:00 |    94105 | 153 |          65 |
 | 2020-09-08 20:00:00 |    94105 | 147 |          72 |
 | 2020-09-08 23:00:00 |    94105 | 137 |          75 |
 +---------------------+----------+-----+-------------*/

Agregar una serie temporal con relleno de huecos

A veces, después de agregar una serie temporal, los datos pueden tener lagunas que deben rellenarse con algunos valores para analizar o presentar los datos más adelante. La técnica que se usa para rellenar esos huecos se llama relleno de huecos. En BigQuery, puedes usar la función de tabla GAP_FILL para rellenar los huecos de los datos de series temporales con uno de los métodos de relleno de huecos que se proporcionan:

  • NULL, también conocido como constante
  • LOCF, última observación registrada
  • Lineal: interpolación lineal entre los dos puntos de datos vecinos.

Para las consultas de esta sección, crea una tabla llamada mydataset.environmental_data_hourly_with_gaps, que se basa en los datos utilizados en la sección anterior, pero con lagunas. En situaciones reales, los datos pueden tener puntos de datos que faltan debido a un fallo a corto plazo de una estación meteorológica.

CREATE OR REPLACE TABLE mydataset.environmental_data_hourly_with_gaps AS
SELECT * FROM UNNEST(
  ARRAY<STRUCT<zip_code INT64, time TIMESTAMP, aqi INT64, temperature INT64>>[
    STRUCT(60606, TIMESTAMP '2020-09-08 00:30:51', 22, 66),
    STRUCT(60606, TIMESTAMP '2020-09-08 01:32:10', 23, 63),
    STRUCT(60606, TIMESTAMP '2020-09-08 02:30:35', 22, 60),
    STRUCT(60606, TIMESTAMP '2020-09-08 03:29:39', 21, 58),
    STRUCT(60606, TIMESTAMP '2020-09-08 04:33:05', 21, 59),
    STRUCT(60606, TIMESTAMP '2020-09-08 05:32:01', 21, 57),
    STRUCT(60606, TIMESTAMP '2020-09-08 06:31:14', 22, 56),
    STRUCT(60606, TIMESTAMP '2020-09-08 07:31:06', 28, 55),
    STRUCT(60606, TIMESTAMP '2020-09-08 08:29:59', 30, 55),
    STRUCT(60606, TIMESTAMP '2020-09-08 09:29:34', 31, 55),
    STRUCT(60606, TIMESTAMP '2020-09-08 10:31:24', 38, 56),
    STRUCT(60606, TIMESTAMP '2020-09-08 11:31:24', 38, 56),
    -- No data points between hours 12 and 15.
    STRUCT(60606, TIMESTAMP '2020-09-08 16:34:22', 43, 65),
    STRUCT(60606, TIMESTAMP '2020-09-08 17:33:23', 42, 68),
    STRUCT(60606, TIMESTAMP '2020-09-08 18:28:47', 36, 69),
    STRUCT(60606, TIMESTAMP '2020-09-08 19:30:28', 34, 67),
    STRUCT(60606, TIMESTAMP '2020-09-08 20:30:53', 29, 67),
    STRUCT(60606, TIMESTAMP '2020-09-08 21:32:28', 27, 67),
    STRUCT(60606, TIMESTAMP '2020-09-08 22:31:45', 25, 65),
    STRUCT(60606, TIMESTAMP '2020-09-08 23:31:02', 22, 63),
    STRUCT(94105, TIMESTAMP '2020-09-08 00:07:11', 60, 74),
    STRUCT(94105, TIMESTAMP '2020-09-08 01:07:24', 61, 73),
    STRUCT(94105, TIMESTAMP '2020-09-08 02:08:07', 60, 71),
    STRUCT(94105, TIMESTAMP '2020-09-08 03:11:05', 69, 69),
    STRUCT(94105, TIMESTAMP '2020-09-08 04:07:26', 72, 67),
    STRUCT(94105, TIMESTAMP '2020-09-08 05:08:11', 70, 66),
    STRUCT(94105, TIMESTAMP '2020-09-08 06:07:30', 68, 65),
    STRUCT(94105, TIMESTAMP '2020-09-08 07:07:10', 77, 64),
    STRUCT(94105, TIMESTAMP '2020-09-08 08:06:35', 81, 64),
    STRUCT(94105, TIMESTAMP '2020-09-08 09:10:18', 82, 63),
    STRUCT(94105, TIMESTAMP '2020-09-08 10:08:10', 107, 62),
    STRUCT(94105, TIMESTAMP '2020-09-08 11:08:01', 115, 62),
    STRUCT(94105, TIMESTAMP '2020-09-08 12:07:39', 120, 62),
    STRUCT(94105, TIMESTAMP '2020-09-08 13:06:03', 125, 61),
    STRUCT(94105, TIMESTAMP '2020-09-08 14:08:37', 129, 62),
    -- No data points between hours 15 and 18.
    STRUCT(94105, TIMESTAMP '2020-09-08 19:08:43', 151, 67),
    STRUCT(94105, TIMESTAMP '2020-09-08 20:07:19', 150, 69),
    STRUCT(94105, TIMESTAMP '2020-09-08 21:07:37', 148, 72),
    STRUCT(94105, TIMESTAMP '2020-09-08 22:08:01', 143, 76),
    STRUCT(94105, TIMESTAMP '2020-09-08 23:08:41', 137, 75)
]);

Obtener una media de 3 horas (incluidos los huecos)

La siguiente consulta calcula la temperatura y el índice de calidad del aire medios de 3 horas de cada código postal:

SELECT
  TIMESTAMP_BUCKET(time, INTERVAL 3 HOUR) AS time,
  zip_code,
  CAST(AVG(aqi) AS INT64) AS aqi,
  CAST(AVG(temperature) AS INT64) AS temperature
FROM mydataset.environmental_data_hourly_with_gaps
GROUP BY zip_code, time
ORDER BY zip_code, time;

/*---------------------+----------+-----+-------------+
 |        time         | zip_code | aqi | temperature |
 +---------------------+----------+-----+-------------+
 | 2020-09-08 00:00:00 |    60606 |  22 |          63 |
 | 2020-09-08 03:00:00 |    60606 |  21 |          58 |
 | 2020-09-08 06:00:00 |    60606 |  27 |          55 |
 | 2020-09-08 09:00:00 |    60606 |  36 |          56 |
 | 2020-09-08 15:00:00 |    60606 |  43 |          67 |
 | 2020-09-08 18:00:00 |    60606 |  33 |          68 |
 | 2020-09-08 21:00:00 |    60606 |  25 |          65 |
 | 2020-09-08 00:00:00 |    94105 |  60 |          73 |
 | 2020-09-08 03:00:00 |    94105 |  70 |          67 |
 | 2020-09-08 06:00:00 |    94105 |  75 |          64 |
 | 2020-09-08 09:00:00 |    94105 | 101 |          62 |
 | 2020-09-08 12:00:00 |    94105 | 125 |          62 |
 | 2020-09-08 18:00:00 |    94105 | 151 |          68 |
 | 2020-09-08 21:00:00 |    94105 | 143 |          74 |
 +---------------------+----------+-----+-------------*/

Observa cómo la salida tiene lagunas en determinados intervalos de tiempo. Por ejemplo, la serie temporal del código postal 60606 no tiene ningún punto de datos en 2020-09-08 12:00:00, y la serie temporal del código postal 94105 no tiene ningún punto de datos en 2020-09-08 15:00:00.

Obtener una media de 3 horas (rellenar los huecos)

Usa la consulta de la sección anterior y añade la función GAP_FILL para rellenar los huecos:

WITH aggregated_3_hr AS (
  SELECT
    TIMESTAMP_BUCKET(time, INTERVAL 3 HOUR) AS time,
    zip_code,
    CAST(AVG(aqi) AS INT64) AS aqi,
    CAST(AVG(temperature) AS INT64) AS temperature
   FROM mydataset.environmental_data_hourly_with_gaps
   GROUP BY zip_code, time)

SELECT *
FROM GAP_FILL(
  TABLE aggregated_3_hr,
  ts_column => 'time',
  bucket_width => INTERVAL 3 HOUR,
  partitioning_columns => ['zip_code']
)
ORDER BY zip_code, time;

/*---------------------+----------+------+-------------+
 |        time         | zip_code | aqi  | temperature |
 +---------------------+----------+------+-------------+
 | 2020-09-08 00:00:00 |    60606 |   22 |          63 |
 | 2020-09-08 03:00:00 |    60606 |   21 |          58 |
 | 2020-09-08 06:00:00 |    60606 |   27 |          55 |
 | 2020-09-08 09:00:00 |    60606 |   36 |          56 |
 | 2020-09-08 12:00:00 |    60606 | NULL |        NULL |
 | 2020-09-08 15:00:00 |    60606 |   43 |          67 |
 | 2020-09-08 18:00:00 |    60606 |   33 |          68 |
 | 2020-09-08 21:00:00 |    60606 |   25 |          65 |
 | 2020-09-08 00:00:00 |    94105 |   60 |          73 |
 | 2020-09-08 03:00:00 |    94105 |   70 |          67 |
 | 2020-09-08 06:00:00 |    94105 |   75 |          64 |
 | 2020-09-08 09:00:00 |    94105 |  101 |          62 |
 | 2020-09-08 12:00:00 |    94105 |  125 |          62 |
 | 2020-09-08 15:00:00 |    94105 | NULL |        NULL |
 | 2020-09-08 18:00:00 |    94105 |  151 |          68 |
 | 2020-09-08 21:00:00 |    94105 |  143 |          74 |
 +---------------------+----------+------+-------------*/

La tabla de resultados ahora contiene una fila que falta en 2020-09-08 12:00:00 para el código postal 60606 y en 2020-09-08 15:00:00 para el código postal 94105, con NULL valores en las columnas de métricas correspondientes. Como no has especificado ningún método de relleno de huecos, GAP_FILL ha usado el método predeterminado, NULL.

Cubrir las lagunas con la interpolación lineal y la imputación del último valor observado

En la siguiente consulta, se usa la función GAP_FILL con el método de relleno de huecos LOCF para la columna aqi y la interpolación lineal para la columna temperature:

WITH aggregated_3_hr AS (
  SELECT
    TIMESTAMP_BUCKET(time, INTERVAL 3 HOUR) AS time,
    zip_code,
    CAST(AVG(aqi) AS INT64) AS aqi,
    CAST(AVG(temperature) AS INT64) AS temperature
   FROM mydataset.environmental_data_hourly_with_gaps
   GROUP BY zip_code, time)

SELECT *
FROM GAP_FILL(
  TABLE aggregated_3_hr,
  ts_column => 'time',
  bucket_width => INTERVAL 3 HOUR,
  partitioning_columns => ['zip_code'],
  value_columns => [
    ('aqi', 'locf'),
    ('temperature', 'linear')
  ]
)
ORDER BY zip_code, time;

/*---------------------+----------+-----+-------------+
 |        time         | zip_code | aqi | temperature |
 +---------------------+----------+-----+-------------+
 | 2020-09-08 00:00:00 |    60606 |  22 |          63 |
 | 2020-09-08 03:00:00 |    60606 |  21 |          58 |
 | 2020-09-08 06:00:00 |    60606 |  27 |          55 |
 | 2020-09-08 09:00:00 |    60606 |  36 |          56 |
 | 2020-09-08 12:00:00 |    60606 |  36 |          62 |
 | 2020-09-08 15:00:00 |    60606 |  43 |          67 |
 | 2020-09-08 18:00:00 |    60606 |  33 |          68 |
 | 2020-09-08 21:00:00 |    60606 |  25 |          65 |
 | 2020-09-08 00:00:00 |    94105 |  60 |          73 |
 | 2020-09-08 03:00:00 |    94105 |  70 |          67 |
 | 2020-09-08 06:00:00 |    94105 |  75 |          64 |
 | 2020-09-08 09:00:00 |    94105 | 101 |          62 |
 | 2020-09-08 12:00:00 |    94105 | 125 |          62 |
 | 2020-09-08 15:00:00 |    94105 | 125 |          65 |
 | 2020-09-08 18:00:00 |    94105 | 151 |          68 |
 | 2020-09-08 21:00:00 |    94105 | 143 |          74 |
 +---------------------+----------+-----+-------------*/

En esta consulta, la primera fila con valores rellenados tiene el valor aqi 36, que se toma del punto de datos anterior de esta serie temporal (código postal 60606) a las 2020-09-08 09:00:00. El valor temperature 62 es el resultado de una interpolación lineal entre los puntos de datos 2020-09-08 09:00:00 y 2020-09-08 15:00:00. La otra fila que falta se creó de forma similar: el aqivalor125 se transfirió del punto de datos anterior de esta serie temporal (código postal 94105) y el valor de temperatura 65 es el resultado de la interpolación lineal entre los puntos de datos anteriores y posteriores disponibles.

Alinear una serie temporal con relleno de huecos

Las series temporales pueden estar alineadas o no. Una serie temporal está alineada cuando los puntos de datos solo se producen a intervalos regulares.

En el mundo real, en el momento de la recogida, las series temporales rara vez están alineadas y suelen requerir un procesamiento adicional para alinearlas.

Por ejemplo, supongamos que tienes dispositivos IoT que envían sus métricas a un recopilador centralizado cada minuto. No sería razonable esperar que los dispositivos envíen sus métricas exactamente en los mismos instantes. Normalmente, cada dispositivo envía sus métricas con la misma frecuencia (periodo), pero con un desfase temporal diferente (alineación). En el siguiente diagrama se ilustra este ejemplo. Puedes ver que cada dispositivo envía sus datos con un intervalo de un minuto, con algunas instancias de datos que faltan (Dispositivo 3 a las 9:36:39) y datos retrasados (Dispositivo 1 a las 9:37:28).

Ejemplo de alineación de series temporales

Puedes realizar una alineación de series temporales en datos no alineados mediante la agregación temporal. Esto resulta útil si quieres cambiar el periodo de muestreo de la serie temporal, por ejemplo, de 1 minuto a 15 minutos. Puede alinear los datos para procesar series temporales, como combinar datos de series temporales, o para mostrarlos (por ejemplo, en un gráfico).

Puedes usar la función de tabla GAP_FILL con los métodos de arrastre del último valor observado o de interpolación lineal para alinear series temporales. La idea es usar GAP_FILL con el periodo de salida y la alineación seleccionados (controlados por el argumento de origen opcional). El resultado de la operación es una tabla con series temporales alineadas, donde los valores de cada punto de datos se derivan de las series temporales de entrada con el método de relleno de huecos utilizado para esa columna de valores concreta (LOCF o lineal).

Crea una tabla mydataset.device_data similar a la de la ilustración anterior:

CREATE OR REPLACE TABLE mydataset.device_data AS
SELECT * FROM UNNEST(
  ARRAY<STRUCT<device_id INT64, time TIMESTAMP, signal INT64, state STRING>>[
    STRUCT(2, TIMESTAMP '2023-11-01 09:35:07', 87, 'ACTIVE'),
    STRUCT(1, TIMESTAMP '2023-11-01 09:35:26', 82, 'ACTIVE'),
    STRUCT(3, TIMESTAMP '2023-11-01 09:35:39', 74, 'INACTIVE'),
    STRUCT(2, TIMESTAMP '2023-11-01 09:36:07', 88, 'ACTIVE'),
    STRUCT(1, TIMESTAMP '2023-11-01 09:36:26', 82, 'ACTIVE'),
    STRUCT(2, TIMESTAMP '2023-11-01 09:37:07', 88, 'ACTIVE'),
    STRUCT(1, TIMESTAMP '2023-11-01 09:37:28', 80, 'ACTIVE'),
    STRUCT(3, TIMESTAMP '2023-11-01 09:37:39', 77, 'ACTIVE'),
    STRUCT(2, TIMESTAMP '2023-11-01 09:38:07', 86, 'ACTIVE'),
    STRUCT(1, TIMESTAMP '2023-11-01 09:38:26', 81, 'ACTIVE'),
    STRUCT(3, TIMESTAMP '2023-11-01 09:38:39', 77, 'ACTIVE')
]);

A continuación, se muestran los datos reales ordenados por las columnas time y device_id:

SELECT * FROM mydataset.device_data ORDER BY time, device_id;

/*-----------+---------------------+--------+----------+
 | device_id |        time         | signal |  state   |
 +-----------+---------------------+--------+----------+
 |         2 | 2023-11-01 09:35:07 |     87 | ACTIVE   |
 |         1 | 2023-11-01 09:35:26 |     82 | ACTIVE   |
 |         3 | 2023-11-01 09:35:39 |     74 | INACTIVE |
 |         2 | 2023-11-01 09:36:07 |     88 | ACTIVE   |
 |         1 | 2023-11-01 09:36:26 |     82 | ACTIVE   |
 |         2 | 2023-11-01 09:37:07 |     88 | ACTIVE   |
 |         1 | 2023-11-01 09:37:28 |     80 | ACTIVE   |
 |         3 | 2023-11-01 09:37:39 |     77 | ACTIVE   |
 |         2 | 2023-11-01 09:38:07 |     86 | ACTIVE   |
 |         1 | 2023-11-01 09:38:26 |     81 | ACTIVE   |
 |         3 | 2023-11-01 09:38:39 |     77 | ACTIVE   |
 +-----------+---------------------+--------+----------*/

La tabla contiene la serie temporal de cada dispositivo con dos columnas de métricas:

  • signal: nivel de la señal observado por el dispositivo en el momento del muestreo, representado como un valor entero entre 0 y 100.
  • state: estado del dispositivo en el momento del muestreo, representado como una cadena de formato libre.

En la siguiente consulta, se usa la función GAP_FILL para alinear las series temporales a intervalos de 1 minuto. Observa cómo se usa la interpolación lineal para calcular los valores de la columna signal y la LOCF para la columna state. En este ejemplo, la interpolación lineal es una opción adecuada para calcular los valores de salida.

SELECT *
FROM GAP_FILL(
  TABLE mydataset.device_data,
  ts_column => 'time',
  bucket_width => INTERVAL 1 MINUTE,
  partitioning_columns => ['device_id'],
  value_columns => [
    ('signal', 'linear'),
    ('state', 'locf')
  ]
)
ORDER BY time, device_id;

 /*---------------------+-----------+--------+----------+
 |        time         | device_id | signal |  state   |
 +---------------------+-----------+--------+----------+
 | 2023-11-01 09:36:00 |         1 |     82 | ACTIVE   |
 | 2023-11-01 09:36:00 |         2 |     88 | ACTIVE   |
 | 2023-11-01 09:36:00 |         3 |     75 | INACTIVE |
 | 2023-11-01 09:37:00 |         1 |     81 | ACTIVE   |
 | 2023-11-01 09:37:00 |         2 |     88 | ACTIVE   |
 | 2023-11-01 09:37:00 |         3 |     76 | INACTIVE |
 | 2023-11-01 09:38:00 |         1 |     81 | ACTIVE   |
 | 2023-11-01 09:38:00 |         2 |     86 | ACTIVE   |
 | 2023-11-01 09:38:00 |         3 |     77 | ACTIVE   |
 +---------------------+-----------+--------+----------*/

La tabla de salida contiene una serie temporal alineada para cada dispositivo y columnas de valor (signal y state), calculadas mediante los métodos de relleno de huecos especificados en la llamada de función.

Combinar datos de series temporales

Puedes combinar datos de series temporales mediante una combinación con ventana o una AS OF.

Unión con ventana

A veces, es necesario combinar dos o más tablas con datos de serie temporal. Considera las dos tablas siguientes:

  • mydataset.sensor_temperatures, contiene los datos de temperatura registrados por cada sensor cada 15 segundos.
  • mydataset.sensor_fuel_rates, contiene la tasa de consumo de combustible medida por cada sensor cada 15 segundos.

Para crear estas tablas, ejecuta las siguientes consultas:

CREATE OR REPLACE TABLE mydataset.sensor_temperatures AS
SELECT * FROM UNNEST(
  ARRAY<STRUCT<sensor_id INT64, ts TIMESTAMP, temp FLOAT64>>[
  (1, TIMESTAMP '2020-01-01 12:00:00.063', 37.1),
  (1, TIMESTAMP '2020-01-01 12:00:15.024', 37.2),
  (1, TIMESTAMP '2020-01-01 12:00:30.032', 37.3),
  (2, TIMESTAMP '2020-01-01 12:00:01.001', 38.1),
  (2, TIMESTAMP '2020-01-01 12:00:15.082', 38.2),
  (2, TIMESTAMP '2020-01-01 12:00:31.009', 38.3)
]);

CREATE OR REPLACE TABLE mydataset.sensor_fuel_rates AS
SELECT * FROM UNNEST(
  ARRAY<STRUCT<sensor_id INT64, ts TIMESTAMP, rate FLOAT64>>[
    (1, TIMESTAMP '2020-01-01 12:00:11.016', 10.1),
    (1, TIMESTAMP '2020-01-01 12:00:26.015', 10.2),
    (1, TIMESTAMP '2020-01-01 12:00:41.014', 10.3),
    (2, TIMESTAMP '2020-01-01 12:00:08.099', 11.1),
    (2, TIMESTAMP '2020-01-01 12:00:23.087', 11.2),
    (2, TIMESTAMP '2020-01-01 12:00:38.077', 11.3)
]);

Estos son los datos reales de las tablas:

SELECT * FROM mydataset.sensor_temperatures ORDER BY sensor_id, ts;

 /*-----------+---------------------+------+
 | sensor_id |         ts          | temp |
 +-----------+---------------------+------+
 |         1 | 2020-01-01 12:00:00 | 37.1 |
 |         1 | 2020-01-01 12:00:15 | 37.2 |
 |         1 | 2020-01-01 12:00:30 | 37.3 |
 |         2 | 2020-01-01 12:00:01 | 38.1 |
 |         2 | 2020-01-01 12:00:15 | 38.2 |
 |         2 | 2020-01-01 12:00:31 | 38.3 |
 +-----------+---------------------+------*/

SELECT * FROM mydataset.sensor_fuel_rates ORDER BY sensor_id, ts;

 /*-----------+---------------------+------+
 | sensor_id |         ts          | rate |
 +-----------+---------------------+------+
 |         1 | 2020-01-01 12:00:11 | 10.1 |
 |         1 | 2020-01-01 12:00:26 | 10.2 |
 |         1 | 2020-01-01 12:00:41 | 10.3 |
 |         2 | 2020-01-01 12:00:08 | 11.1 |
 |         2 | 2020-01-01 12:00:23 | 11.2 |
 |         2 | 2020-01-01 12:00:38 | 11.3 |
 +-----------+---------------------+------*/

Para comprobar el índice de consumo de combustible a la temperatura registrada por cada sensor, puedes combinar las dos series temporales.

Aunque los datos de las dos series temporales no están alineados, se muestrean en el mismo intervalo (15 segundos), por lo que son una buena opción para una combinación con ventana. Usa las funciones de creación de contenedores de tiempo para alinear las marcas de tiempo que se usan como claves de unión.

Las siguientes consultas muestran cómo se puede asignar cada marca de tiempo a ventanas de 15 segundos mediante la función TIMESTAMP_BUCKET:

SELECT *, TIMESTAMP_BUCKET(ts, INTERVAL 15 SECOND) ts_window
FROM mydataset.sensor_temperatures
ORDER BY sensor_id, ts;

/*-----------+---------------------+------+---------------------+
 | sensor_id |         ts          | temp |      ts_window      |
 +-----------+---------------------+------+---------------------+
 |         1 | 2020-01-01 12:00:00 | 37.1 | 2020-01-01 12:00:00 |
 |         1 | 2020-01-01 12:00:15 | 37.2 | 2020-01-01 12:00:15 |
 |         1 | 2020-01-01 12:00:30 | 37.3 | 2020-01-01 12:00:30 |
 |         2 | 2020-01-01 12:00:01 | 38.1 | 2020-01-01 12:00:00 |
 |         2 | 2020-01-01 12:00:15 | 38.2 | 2020-01-01 12:00:15 |
 |         2 | 2020-01-01 12:00:31 | 38.3 | 2020-01-01 12:00:30 |
 +-----------+---------------------+------+---------------------*/

SELECT *, TIMESTAMP_BUCKET(ts, INTERVAL 15 SECOND) ts_window
FROM mydataset.sensor_fuel_rates
ORDER BY sensor_id, ts;

/*-----------+---------------------+------+---------------------+
 | sensor_id |         ts          | rate |      ts_window      |
 +-----------+---------------------+------+---------------------+
 |         1 | 2020-01-01 12:00:11 | 10.1 | 2020-01-01 12:00:00 |
 |         1 | 2020-01-01 12:00:26 | 10.2 | 2020-01-01 12:00:15 |
 |         1 | 2020-01-01 12:00:41 | 10.3 | 2020-01-01 12:00:30 |
 |         2 | 2020-01-01 12:00:08 | 11.1 | 2020-01-01 12:00:00 |
 |         2 | 2020-01-01 12:00:23 | 11.2 | 2020-01-01 12:00:15 |
 |         2 | 2020-01-01 12:00:38 | 11.3 | 2020-01-01 12:00:30 |
 +-----------+---------------------+------+---------------------*/

Puedes usar este concepto para combinar los datos de la tasa de consumo de combustible con la temperatura registrada por cada sensor:

SELECT
  t1.sensor_id AS sensor_id,
  t1.ts AS temp_ts,
  t1.temp AS temp,
  t2.ts AS rate_ts,
  t2.rate AS rate
FROM mydataset.sensor_temperatures t1
LEFT JOIN mydataset.sensor_fuel_rates t2
ON TIMESTAMP_BUCKET(t1.ts, INTERVAL 15 SECOND) =
     TIMESTAMP_BUCKET(t2.ts, INTERVAL 15 SECOND)
   AND t1.sensor_id = t2.sensor_id
ORDER BY sensor_id, temp_ts;

/*-----------+---------------------+------+---------------------+------+
 | sensor_id |       temp_ts       | temp |       rate_ts       | rate |
 +-----------+---------------------+------+---------------------+------+
 |         1 | 2020-01-01 12:00:00 | 37.1 | 2020-01-01 12:00:11 | 10.1 |
 |         1 | 2020-01-01 12:00:15 | 37.2 | 2020-01-01 12:00:26 | 10.2 |
 |         1 | 2020-01-01 12:00:30 | 37.3 | 2020-01-01 12:00:41 | 10.3 |
 |         2 | 2020-01-01 12:00:01 | 38.1 | 2020-01-01 12:00:08 | 11.1 |
 |         2 | 2020-01-01 12:00:15 | 38.2 | 2020-01-01 12:00:23 | 11.2 |
 |         2 | 2020-01-01 12:00:31 | 38.3 | 2020-01-01 12:00:38 | 11.3 |
 +-----------+---------------------+------+---------------------+------*/

AS OF unirme

En esta sección, usa la tabla mydataset.sensor_temperatures y crea una tabla mydataset.sensor_location.

La tabla mydataset.sensor_temperatures contiene datos de temperatura de diferentes sensores, que se registran cada 15 segundos:

SELECT * FROM mydataset.sensor_temperatures ORDER BY sensor_id, ts;

/*-----------+---------------------+------+
 | sensor_id |         ts          | temp |
 +-----------+---------------------+------+
 |         1 | 2020-01-01 12:00:00 | 37.1 |
 |         1 | 2020-01-01 12:00:15 | 37.2 |
 |         1 | 2020-01-01 12:00:30 | 37.3 |
 |         2 | 2020-01-01 12:00:45 | 38.1 |
 |         2 | 2020-01-01 12:01:01 | 38.2 |
 |         2 | 2020-01-01 12:01:15 | 38.3 |
 +-----------+---------------------+------*/

Para crear mydataset.sensor_location, ejecuta la siguiente consulta:

CREATE OR REPLACE TABLE mydataset.sensor_locations AS
SELECT * FROM UNNEST(
  ARRAY<STRUCT<sensor_id INT64, ts TIMESTAMP, location GEOGRAPHY>>[
  (1, TIMESTAMP '2020-01-01 11:59:47.063', ST_GEOGPOINT(-122.022, 37.406)),
  (1, TIMESTAMP '2020-01-01 12:00:08.185', ST_GEOGPOINT(-122.021, 37.407)),
  (1, TIMESTAMP '2020-01-01 12:00:28.032', ST_GEOGPOINT(-122.020, 37.405)),
  (2, TIMESTAMP '2020-01-01 07:28:41.239', ST_GEOGPOINT(-122.390, 37.790))
]);

/*-----------+---------------------+------------------------+
 | sensor_id |         ts          |        location        |
 +-----------+---------------------+------------------------+
 |         1 | 2020-01-01 11:59:47 | POINT(-122.022 37.406) |
 |         1 | 2020-01-01 12:00:08 | POINT(-122.021 37.407) |
 |         1 | 2020-01-01 12:00:28 |  POINT(-122.02 37.405) |
 |         2 | 2020-01-01 07:28:41 |   POINT(-122.39 37.79) |
 +-----------+---------------------+------------------------*/

Ahora, combina los datos de mydataset.sensor_temperatures con los de mydataset.sensor_location.

En este caso, no puedes usar una combinación con ventana, ya que los datos de temperatura y la fecha de ubicación no se registran en el mismo intervalo.

Una forma de hacerlo en BigQuery es transformar los datos de marca de tiempo en un intervalo mediante el tipo de datos RANGE. El intervalo representa la validez temporal de una fila, es decir, la hora de inicio y de finalización durante las que la fila es válida.

Usa la función de ventana LEAD para encontrar el siguiente punto de datos de la serie temporal en relación con el punto de datos actual, que también es el límite final de la validez temporal de la fila actual. Las siguientes consultas muestran cómo se hace esto, convirtiendo los datos de ubicación en intervalos de validez:

WITH locations_ranges AS (
  SELECT
    sensor_id,
    RANGE(ts, LEAD(ts) OVER (PARTITION BY sensor_id ORDER BY ts ASC)) AS ts_range,
    location
  FROM mydataset.sensor_locations
)
SELECT * FROM locations_ranges ORDER BY sensor_id, ts_range;

/*-----------+--------------------------------------------+------------------------+
 | sensor_id |                  ts_range                  |        location        |
 +-----------+--------------------------------------------+------------------------+
 |         1 | [2020-01-01 11:59:47, 2020-01-01 12:00:08) | POINT(-122.022 37.406) |
 |         1 | [2020-01-01 12:00:08, 2020-01-01 12:00:28) | POINT(-122.021 37.407) |
 |         1 |           [2020-01-01 12:00:28, UNBOUNDED) |  POINT(-122.02 37.405) |
 |         2 |           [2020-01-01 07:28:41, UNBOUNDED) |   POINT(-122.39 37.79) |
 +-----------+--------------------------------------------+------------------------*/

Ahora puede combinar los datos de temperatura (izquierda) con los datos de ubicación (derecha):

WITH locations_ranges AS (
  SELECT
    sensor_id,
    RANGE(ts, LEAD(ts) OVER (PARTITION BY sensor_id ORDER BY ts ASC)) AS ts_range,
    location
  FROM mydataset.sensor_locations
)
SELECT
  t1.sensor_id AS sensor_id,
  t1.ts AS temp_ts,
  t1.temp AS temp,
  t2.location AS location
FROM mydataset.sensor_temperatures t1
LEFT JOIN locations_ranges t2
ON RANGE_CONTAINS(t2.ts_range, t1.ts)
AND t1.sensor_id = t2.sensor_id
ORDER BY sensor_id, temp_ts;

/*-----------+---------------------+------+------------------------+
 | sensor_id |       temp_ts       | temp |        location        |
 +-----------+---------------------+------+------------------------+
 |         1 | 2020-01-01 12:00:00 | 37.1 | POINT(-122.022 37.406) |
 |         1 | 2020-01-01 12:00:15 | 37.2 | POINT(-122.021 37.407) |
 |         1 | 2020-01-01 12:00:30 | 37.3 |  POINT(-122.02 37.405) |
 |         2 | 2020-01-01 12:00:01 | 38.1 |   POINT(-122.39 37.79) |
 |         2 | 2020-01-01 12:00:15 | 38.2 |   POINT(-122.39 37.79) |
 |         2 | 2020-01-01 12:00:31 | 38.3 |   POINT(-122.39 37.79) |
 +-----------+---------------------+------+------------------------*/

Combinar y dividir datos de un intervalo

En esta sección, combina los datos de intervalos que se solapan y divide los datos de intervalos en intervalos más pequeños.

Combinar datos de intervalos

Las tablas con valores de intervalo pueden tener intervalos superpuestos. En la siguiente consulta, los intervalos de tiempo registran el estado de los sensores en intervalos de aproximadamente 5 minutos:

CREATE OR REPLACE TABLE mydataset.sensor_metrics AS
SELECT * FROM UNNEST(
  ARRAY<STRUCT<sensor_id INT64, duration RANGE<DATETIME>, flow INT64, spins INT64>>[
  (1, RANGE<DATETIME> "[2020-01-01 12:00:01, 2020-01-01 12:05:23)", 10, 1),
  (1, RANGE<DATETIME> "[2020-01-01 12:05:12, 2020-01-01 12:10:46)", 10, 20),
  (1, RANGE<DATETIME> "[2020-01-01 12:10:27, 2020-01-01 12:15:56)", 11, 4),
  (1, RANGE<DATETIME> "[2020-01-01 12:16:00, 2020-01-01 12:20:58)", 11, 9),
  (1, RANGE<DATETIME> "[2020-01-01 12:20:33, 2020-01-01 12:25:08)", 11, 8),
  (2, RANGE<DATETIME> "[2020-01-01 12:00:19, 2020-01-01 12:05:08)", 21, 31),
  (2, RANGE<DATETIME> "[2020-01-01 12:05:08, 2020-01-01 12:10:30)", 21, 2),
  (2, RANGE<DATETIME> "[2020-01-01 12:10:22, 2020-01-01 12:15:42)", 21, 10)
]);

La siguiente consulta en la tabla muestra varios intervalos superpuestos:

SELECT * FROM mydataset.sensor_metrics;

/*-----------+--------------------------------------------+------+-------+
 | sensor_id |                  duration                  | flow | spins |
 +-----------+--------------------------------------------+------+-------+
 |         1 | [2020-01-01 12:00:01, 2020-01-01 12:05:23) | 10   |     1 |
 |         1 | [2020-01-01 12:05:12, 2020-01-01 12:10:46) | 10   |    20 |
 |         1 | [2020-01-01 12:10:27, 2020-01-01 12:15:56) | 11   |     4 |
 |         1 | [2020-01-01 12:16:00, 2020-01-01 12:20:58) | 11   |     9 |
 |         1 | [2020-01-01 12:20:33, 2020-01-01 12:25:08) | 11   |     8 |
 |         2 | [2020-01-01 12:00:19, 2020-01-01 12:05:08) | 21   |    31 |
 |         2 | [2020-01-01 12:05:08, 2020-01-01 12:10:30) | 21   |     2 |
 |         2 | [2020-01-01 12:10:22, 2020-01-01 12:15:42) | 21   |    10 |
 +-----------+--------------------------------------------+------+-------*/

En algunos de los intervalos superpuestos, el valor de la columna flow es el mismo. Por ejemplo, las filas 1 y 2 se solapan y tienen las mismas lecturas de flow. Puedes combinar estas dos filas para reducir el número de filas de la tabla. Puedes usar la función de tabla RANGE_SESSIONIZE para buscar los intervalos que se solapan con cada fila y proporcionar una columna session_range adicional que contenga un intervalo que sea la unión de todos los intervalos que se solapan. Para mostrar los intervalos de sesión de cada fila, ejecuta la siguiente consulta:

SELECT sensor_id, session_range, flow
FROM RANGE_SESSIONIZE(
  # Input data.
  (SELECT sensor_id, duration, flow FROM mydataset.sensor_metrics),
  # Range column.
  "duration",
  # Partitioning columns. Ranges are sessionized only within these partitions.
  ["sensor_id", "flow"],
  # Sessionize mode.
  "OVERLAPS")
ORDER BY sensor_id, session_range;

/*-----------+--------------------------------------------+------+
 | sensor_id |                session_range               | flow |
 +-----------+--------------------------------------------+------+
 |         1 | [2020-01-01 12:00:01, 2020-01-01 12:10:46) | 10   |
 |         1 | [2020-01-01 12:00:01, 2020-01-01 12:10:46) | 10   |
 |         1 | [2020-01-01 12:10:27, 2020-01-01 12:15:56) | 11   |
 |         1 | [2020-01-01 12:16:00, 2020-01-01 12:25:08) | 11   |
 |         1 | [2020-01-01 12:16:00, 2020-01-01 12:25:08) | 11   |
 |         2 | [2020-01-01 12:00:19, 2020-01-01 12:05:08) | 21   |
 |         2 | [2020-01-01 12:05:08, 2020-01-01 12:15:42) | 21   |
 |         2 | [2020-01-01 12:05:08, 2020-01-01 12:15:42) | 21   |
 +-----------+--------------------------------------------+------*/

Tenga en cuenta que, en el caso de sensor_id con el valor 2, el límite final de la primera fila tiene el mismo valor de fecha y hora que el límite inicial de la segunda fila. Sin embargo, como los límites finales son exclusivos, no se solapan (solo se tocan) y, por lo tanto, no se encuentran en los mismos intervalos de sesión. Si quieres colocar estas dos filas en los mismos intervalos de sesión, usa el modo MEETS.

Para combinar los intervalos, agrupa los resultados por session_range y las columnas de partición (sensor_id y flow):

SELECT sensor_id, session_range, flow
FROM RANGE_SESSIONIZE(
  (SELECT sensor_id, duration, flow FROM mydataset.sensor_metrics),
  "duration",
  ["sensor_id", "flow"],
  "OVERLAPS")
GROUP BY sensor_id, session_range, flow
ORDER BY sensor_id, session_range;

/*-----------+--------------------------------------------+------+
 | sensor_id |                session_range               | flow |
 +-----------+--------------------------------------------+------+
 |         1 | [2020-01-01 12:00:01, 2020-01-01 12:10:46) | 10   |
 |         1 | [2020-01-01 12:10:27, 2020-01-01 12:15:56) | 11   |
 |         1 | [2020-01-01 12:16:00, 2020-01-01 12:25:08) | 11   |
 |         2 | [2020-01-01 12:00:19, 2020-01-01 12:05:08) | 21   |
 |         2 | [2020-01-01 12:05:08, 2020-01-01 12:15:42) | 21   |
 +-----------+--------------------------------------------+------*/

Por último, añade la columna spins a los datos de sesión agregándola con SUM.

SELECT sensor_id, session_range, flow, SUM(spins) as spins
FROM RANGE_SESSIONIZE(
  TABLE mydataset.sensor_metrics,
  "duration",
  ["sensor_id", "flow"],
  "OVERLAPS")
GROUP BY sensor_id, session_range, flow
ORDER BY sensor_id, session_range;

/*-----------+--------------------------------------------+------+-------+
 | sensor_id |                session_range               | flow | spins |
 +-----------+--------------------------------------------+------+-------+
 |         1 | [2020-01-01 12:00:01, 2020-01-01 12:10:46) | 10   |    21 |
 |         1 | [2020-01-01 12:10:27, 2020-01-01 12:15:56) | 11   |     4 |
 |         1 | [2020-01-01 12:16:00, 2020-01-01 12:25:08) | 11   |    17 |
 |         2 | [2020-01-01 12:00:19, 2020-01-01 12:05:08) | 21   |    31 |
 |         2 | [2020-01-01 12:05:08, 2020-01-01 12:15:42) | 21   |    12 |
 +-----------+--------------------------------------------+------+-------*/

Dividir datos de intervalo

También puedes dividir un intervalo en intervalos más pequeños. En este ejemplo, usaremos la siguiente tabla con datos de intervalos:

/*-----------+--------------------------+------+-------+
 | sensor_id |         duration         | flow | spins |
 +-----------+--------------------------+------+-------+
 |         1 | [2020-01-01, 2020-12-31) | 10   |    21 |
 |         1 | [2021-01-01, 2021-12-31) | 11   |     4 |
 |         2 | [2020-04-15, 2021-04-15) | 21   |    31 |
 |         2 | [2021-04-15, 2021-04-15) | 21   |    12 |
 +-----------+--------------------------+------+-------*/

Ahora, divide los intervalos originales en intervalos de 3 meses:

WITH sensor_data AS (
  SELECT * FROM UNNEST(
    ARRAY<STRUCT<sensor_id INT64, duration RANGE<DATE>, flow INT64, spins INT64>>[
    (1, RANGE<DATE> "[2020-01-01, 2020-12-31)", 10, 21),
    (1, RANGE<DATE> "[2021-01-01, 2021-12-31)", 11, 4),
    (2, RANGE<DATE> "[2020-04-15, 2021-04-15)", 21, 31),
    (2, RANGE<DATE> "[2021-04-15, 2022-04-15)", 21, 12)
  ])
)
SELECT sensor_id, expanded_range, flow, spins
FROM sensor_data, UNNEST(GENERATE_RANGE_ARRAY(duration, INTERVAL 3 MONTH)) AS expanded_range;

/*-----------+--------------------------+------+-------+
 | sensor_id |      expanded_range      | flow | spins |
 +-----------+--------------------------+------+-------+
 |         1 | [2020-01-01, 2020-04-01) |   10 |    21 |
 |         1 | [2020-04-01, 2020-07-01) |   10 |    21 |
 |         1 | [2020-07-01, 2020-10-01) |   10 |    21 |
 |         1 | [2020-10-01, 2020-12-31) |   10 |    21 |
 |         1 | [2021-01-01, 2021-04-01) |   11 |     4 |
 |         1 | [2021-04-01, 2021-07-01) |   11 |     4 |
 |         1 | [2021-07-01, 2021-10-01) |   11 |     4 |
 |         1 | [2021-10-01, 2021-12-31) |   11 |     4 |
 |         2 | [2020-04-15, 2020-07-15) |   21 |    31 |
 |         2 | [2020-07-15, 2020-10-15) |   21 |    31 |
 |         2 | [2020-10-15, 2021-01-15) |   21 |    31 |
 |         2 | [2021-01-15, 2021-04-15) |   21 |    31 |
 |         2 | [2021-04-15, 2021-07-15) |   21 |    12 |
 |         2 | [2021-07-15, 2021-10-15) |   21 |    12 |
 |         2 | [2021-10-15, 2022-01-15) |   21 |    12 |
 |         2 | [2022-01-15, 2022-04-15) |   21 |    12 |
 +-----------+--------------------------+------+-------*/

En la consulta anterior, cada intervalo original se ha desglosado en intervalos más pequeños, con una anchura de INTERVAL 3 MONTH. Sin embargo, los intervalos de 3 meses no se alinean con un origen común. Para alinear estos intervalos con un origen común 2020-01-01, ejecuta la siguiente consulta:

WITH sensor_data AS (
  SELECT * FROM UNNEST(
    ARRAY<STRUCT<sensor_id INT64, duration RANGE<DATE>, flow INT64, spins INT64>>[
    (1, RANGE<DATE> "[2020-01-01, 2020-12-31)", 10, 21),
    (1, RANGE<DATE> "[2021-01-01, 2021-12-31)", 11, 4),
    (2, RANGE<DATE> "[2020-04-15, 2021-04-15)", 21, 31),
    (2, RANGE<DATE> "[2021-04-15, 2022-04-15)", 21, 12)
  ])
)
SELECT sensor_id, expanded_range, flow, spins
FROM sensor_data
JOIN UNNEST(GENERATE_RANGE_ARRAY(RANGE<DATE> "[2020-01-01, 2022-12-31)", INTERVAL 3 MONTH)) AS expanded_range
ON RANGE_OVERLAPS(duration, expanded_range);

/*-----------+--------------------------+------+-------+
 | sensor_id |      expanded_range      | flow | spins |
 +-----------+--------------------------+------+-------+
 |         1 | [2020-01-01, 2020-04-01) |   10 |    21 |
 |         1 | [2020-04-01, 2020-07-01) |   10 |    21 |
 |         1 | [2020-07-01, 2020-10-01) |   10 |    21 |
 |         1 | [2020-10-01, 2021-01-01) |   10 |    21 |
 |         1 | [2021-01-01, 2021-04-01) |   11 |     4 |
 |         1 | [2021-04-01, 2021-07-01) |   11 |     4 |
 |         1 | [2021-07-01, 2021-10-01) |   11 |     4 |
 |         1 | [2021-10-01, 2022-01-01) |   11 |     4 |
 |         2 | [2020-04-01, 2020-07-01) |   21 |    31 |
 |         2 | [2020-07-01, 2020-10-01) |   21 |    31 |
 |         2 | [2020-10-01, 2021-01-01) |   21 |    31 |
 |         2 | [2021-01-01, 2021-04-01) |   21 |    31 |
 |         2 | [2021-04-01, 2021-07-01) |   21 |    31 |
 |         2 | [2021-04-01, 2021-07-01) |   21 |    12 |
 |         2 | [2021-07-01, 2021-10-01) |   21 |    12 |
 |         2 | [2021-10-01, 2022-01-01) |   21 |    12 |
 |         2 | [2022-01-01, 2022-04-01) |   21 |    12 |
 |         2 | [2022-04-01, 2022-07-01) |   21 |    12 |
 +-----------+--------------------------+------+-------*/

En la consulta anterior, la fila con el intervalo [2020-04-15, 2021-04-15) se divide en 5 intervalos, empezando por el intervalo [2020-04-01, 2020-07-01). Ten en cuenta que el límite inicial ahora se extiende más allá del límite inicial original para alinearse con el origen común. Si no quieres que el límite inicial se extienda más allá del límite inicial original, puedes restringir la condición JOIN:

WITH sensor_data AS (
  SELECT * FROM UNNEST(
    ARRAY<STRUCT<sensor_id INT64, duration RANGE<DATE>, flow INT64, spins INT64>>[
    (1, RANGE<DATE> "[2020-01-01, 2020-12-31)", 10, 21),
    (1, RANGE<DATE> "[2021-01-01, 2021-12-31)", 11, 4),
    (2, RANGE<DATE> "[2020-04-15, 2021-04-15)", 21, 31),
    (2, RANGE<DATE> "[2021-04-15, 2022-04-15)", 21, 12)
  ])
)
SELECT sensor_id, expanded_range, flow, spins
FROM sensor_data
JOIN UNNEST(GENERATE_RANGE_ARRAY(RANGE<DATE> "[2020-01-01, 2022-12-31)", INTERVAL 3 MONTH)) AS expanded_range
ON RANGE_CONTAINS(duration, RANGE_START(expanded_range));

/*-----------+--------------------------+------+-------+
 | sensor_id |      expanded_range      | flow | spins |
 +-----------+--------------------------+------+-------+
 |         1 | [2020-01-01, 2020-04-01) |   10 |    21 |
 |         1 | [2020-04-01, 2020-07-01) |   10 |    21 |
 |         1 | [2020-07-01, 2020-10-01) |   10 |    21 |
 |         1 | [2020-10-01, 2021-01-01) |   10 |    21 |
 |         1 | [2021-01-01, 2021-04-01) |   11 |     4 |
 |         1 | [2021-04-01, 2021-07-01) |   11 |     4 |
 |         1 | [2021-07-01, 2021-10-01) |   11 |     4 |
 |         1 | [2021-10-01, 2022-01-01) |   11 |     4 |
 |         2 | [2020-07-01, 2020-10-01) |   21 |    31 |
 |         2 | [2020-10-01, 2021-01-01) |   21 |    31 |
 |         2 | [2021-01-01, 2021-04-01) |   21 |    31 |
 |         2 | [2021-04-01, 2021-07-01) |   21 |    31 |
 |         2 | [2021-07-01, 2021-10-01) |   21 |    12 |
 |         2 | [2021-10-01, 2022-01-01) |   21 |    12 |
 |         2 | [2022-01-01, 2022-04-01) |   21 |    12 |
 |         2 | [2022-04-01, 2022-07-01) |   21 |    12 |
 +-----------+--------------------------+------+-------*/

Ahora verás que el intervalo [2020-04-15, 2021-04-15) se ha dividido en 4 intervalos, empezando por el intervalo [2020-07-01, 2020-10-01).

Prácticas recomendadas para almacenar datos

  • Cuando se almacenan datos de series temporales, es importante tener en cuenta los patrones de consulta que se utilizan en las tablas donde se almacenan los datos. Normalmente, cuando se consultan datos de series temporales, se pueden filtrar los datos de un periodo específico.

  • Para optimizar estos patrones de uso, se recomienda almacenar los datos de series temporales en tablas con particiones, con datos particionados por la columna de tiempo o por el tiempo de ingestión. De esta forma, se puede mejorar significativamente el rendimiento del tiempo de consulta de los datos de serie temporal, ya que permite a BigQuery eliminar las particiones que no contienen los datos consultados.

  • Puede habilitar el clustering en la hora, el intervalo o una de las columnas de partición para mejorar aún más el rendimiento del tiempo de consulta.